matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLaplace-TransformationVerschiebungssatz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Laplace-Transformation" - Verschiebungssatz
Verschiebungssatz < Laplace-Transformation < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Laplace-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verschiebungssatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:30 Di 03.03.2009
Autor: mikemodanoxxx

Aufgabe
[Dateianhang nicht öffentlich]

Hi.

Wieso wendet man bei der Aufgabe b) nicht den Verschiebungssatz an? Ich würde die Funktion [mm] t^{2} [/mm] nehmen, davon die Laplace-Transformierte und dann mit einer Verschiebung um 1 und einer Dämpfung mit [mm] e^{-2t}. [/mm] Damit komme ich aber auf eine komplett andere Lösung als durch das Ausmultiplizieren der Klammer. Wodurch kommt das?!

[mm] \bruch{2 e^{-s}}{ (s+2)^{2}} [/mm]

ciao, Mike.

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
        
Bezug
Verschiebungssatz: Antwort
Status: (Antwort) fertig Status 
Datum: 08:21 Mi 04.03.2009
Autor: rainerS

Hallo Mike!

> [Dateianhang nicht öffentlich]
>  Hi.
>  
> Wieso wendet man bei der Aufgabe b) nicht den
> Verschiebungssatz an? Ich würde die Funktion [mm]t^{2}[/mm] nehmen,
> davon die Laplace-Transformierte und dann mit einer
> Verschiebung um 1 und einer Dämpfung mit [mm]e^{-2t}.[/mm] Damit
> komme ich aber auf eine komplett andere Lösung als durch
> das Ausmultiplizieren der Klammer. Wodurch kommt das?!
>  
> [mm]\bruch{2 e^{-s}}{ (s+2)^{2}}[/mm]

Der Verschiebungssatz gilt für Verschiebungen im Zielraum. Wenn du die Funktion im Originalraum verschiebst, ändert sich die untere Grenze der Integration. Das geht also nur für Funkionen, die in dem Bereich zwischen alter und neuer unterer Grenze 0 sind.

Viele Grüße
   Rainer

Bezug
                
Bezug
Verschiebungssatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:22 Mi 04.03.2009
Autor: mikemodanoxxx

Ok danke. Gilt das immer bei kausalen Funktionen? Weil wir das in Etechnik immer benutzen ohne uns großartig Gedanken über Ziel- und Originalraum zu machen :)

Bezug
                        
Bezug
Verschiebungssatz: Antwort
Status: (Antwort) fertig Status 
Datum: 20:38 Mi 04.03.2009
Autor: rainerS

Hallo Mike!

> Ok danke. Gilt das immer bei kausalen Funktionen? Weil wir
> das in Etechnik immer benutzen ohne uns großartig Gedanken
> über Ziel- und Originalraum zu machen :)

Mit kausalen Funktionen meinst du solche, die für $t<0$ 0 sind, oder?

In der Laplacetransformation einer solchen Funktion:

[mm] \integral_{0}^{\infty} f(t) e^{-st} dt [/mm]

kannst du die untere Integrationsgrenze ja durch eine beliebige negative reelle Zahl ersetzen, ohne dass sich etwas ändert. Daher ist

[mm] \mathcal{L}(f(t-a)) = \integral_{0}^{\infty} f(t-a) e^{-st} dt = e^{-sa} \integral_{0}^{\infty} f(t-a) e^{-s(t-a)} dt = e^{-sa}\integral_{-a} ^{\infty} f(t) e^{-st} dt[/mm]

für $a>0$ gerade [mm] $e^{-sa} \mathcal{L}(f(t))$. [/mm]

Für $a<0$ ist das falsch.

Sieh auch []hier!

Viele Grüße
   Rainer

Bezug
                                
Bezug
Verschiebungssatz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:49 Mi 04.03.2009
Autor: mikemodanoxxx

ok vielen Dank.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Laplace-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]