matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikVersion per Limes
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Stochastik" - Version per Limes
Version per Limes < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Version per Limes: Radon-Nikodym
Status: (Frage) überfällig Status 
Datum: 17:24 Mi 22.08.2012
Autor: dennis2

Aufgabe
Hallo! Also aus einer früheren Aufgabe weiß ich Folgendes:

Angenommen, daß [mm] $\mu$ [/mm] ein Wahrscheinlichkeitsmaß ist  und v ein [mm] $\sigma$-endliches [/mm] Maß (beide auf den reellen Zahlen) und daß [mm] $v\ll\mu$. [/mm] Dann erfüllt die Radon-Nikodym-Ableitung f

[mm] $\lim_{h\to 0}\frac{v(x-h,x+h]}{\mu(x-h,x+h]}=f(x)$ [/mm]

on a set of [mm] $\mu$-measure [/mm] 1.

Nun möchte ich gerne folgende Aufgabe lösen:

Suppose that X has distribution [mm] $\mu$. [/mm] Now [mm] $P(A|X)(\omega)=f(X(\omega))$ [/mm] for some Borel function f. Show that

[mm] $\lim_{h \to 0}P(A|x-h
for x in a set of [mm] $\mu$-measure [/mm] 1.

(Roughly speaking, [mm] $P(A|x-h




Ich habe mir dazu Folgendes überlegt. Mal schauen, ob ich es richtig verstanden habe! :-)

Zunächstmal geht es doch um die faktorisierte bedingte Erwartung in dem Sinne, dass [mm] $P(A|X)=E(\chi_A(\omega)|X)=g(X)$ [/mm] für eine Borelfunktion [mm] $g\colon\mathbb{R}\to\mathbb{R}$. [/mm]


Nun betrachte man

[mm] $P(A|x-h
Wenn man jetzt auf [mm] $(\mathbb{R},\mathcal{B}(\mathbb{R}))$ [/mm] einmal die Verteilung [mm] $\mu$ [/mm] von X als Wahrscheinlichkeitsmaß hat, also [mm] $\mu(B)=P(\left\{X\in B\right\}), B\in\mathcal{B}(\mathbb{R})$ [/mm] und außerdem auf [mm] $(\mathbb{R},\mathcal{B}(\mathbb{R}))$ [/mm] das Maß [mm] $v(B)=P(A\cap\left\{X\in B\right\})$ [/mm] für [mm] $B\in\mathcal{B}(\mathbb{R})$ [/mm] betrachtet, so gilt doch, dass [mm] $\mu$ [/mm] und v zwei [mm] $\sigma$-endliche [/mm] Maße sind und zudem [mm] $v\ll\mu$. [/mm]

Demnach kann man den Satz, den ich ganz oben zuerst zitiert habe, anwenden und erhält

[mm] $\lim_{h\to 0}\frac{v(C)}{\mu(C)}=f(x)$. [/mm]


Da $f$ auch eine Borelfunktion ist (wie obige Funktion g), gilt nun, dass

$f(x)=P(A|X=x)$, man hat also eine andere Version, aber die beiden Versionen stimmen fast-sicher überein.
(Ich habe erst eine Funktion g gewählt, weil es ja wohl ziemlich unwahrscheinlich ist, dass man gleich die Version mit der Radon-Nikodym-Ableitung f erwischt... stattdessen habe ich lieber gezeigt, dass man dann zwei Versionen hat - und Versionen stimmen ja fast-sicher überein.)

So, das war's. :-)

Vielleicht kann mir ja jemand ein Feedback geben.


        
Bezug
Version per Limes: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Fr 24.08.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]