matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenVerständnisfrage
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - Verständnisfrage
Verständnisfrage < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verständnisfrage: Tipp
Status: (Frage) beantwortet Status 
Datum: 22:18 Mo 20.10.2008
Autor: Giorda_N

Aufgabe
Sei [mm] z_{n} [/mm] eine Lösung der Gleichung

[mm] z^2 [/mm] +n =nz

für n [mm] \in \IN, [/mm] n [mm] \ge [/mm] 1.
Dh. man wählt für [mm] z_{n} [/mm] die kleinste reelle Lösung, falls es reelle Lösungen gibt und die Lösung mit dem grösstem Imaginärteil andernfalls.

Löse dann:

[mm] \limes_{k\rightarrow\infty} \pmat{ \limes_{n\rightarrow\infty} \bruch{1}{z_{n}^6^k} } [/mm]

und


[mm] \limes_{n\rightarrow\infty} \pmat{ \limes_{k\rightarrow\infty} \bruch{1}{z_{n}^6^k} } [/mm]

Guten Abend :-)

Ach ich habe nur schon Mühe diese Aufgabe zu verstehen, also meine Überlegung waren:

1) ich löse die Gleichung nach [mm] z_{n} [/mm] auf:

[mm] z^2 [/mm] -nz +n = 0

Lösungen:

[mm] \bruch{n}{2} [/mm] + [mm] \bruch{\wurzel{n^2-4n}}{2} [/mm]
und
[mm] \bruch{n}{2} [/mm] - [mm] \bruch{\wurzel{n^2-4n}}{2} [/mm]

Und jetzt bin ich verwirrt....muss ich nach einer kleinsten reelen Lösung suchen? das wäre n=4, dann hätte man die Lösung 2!

aber dann einfach die Aufgabe mit 2 eingesetzt

[mm] \limes_{k\rightarrow\infty} \pmat{ \limes_{n\rightarrow\infty} \bruch{1}{2^6^k} } [/mm]

funktioniert nicht....oder sehe ich da was falsch?


Danke für eine schnelle Antwort :-(


ps. habe die Frage auf kein anderes Forum gestellt.

        
Bezug
Verständnisfrage: Antwort
Status: (Antwort) fertig Status 
Datum: 22:54 Mo 20.10.2008
Autor: leduart

Hallo
fuer n<4 hast du keine reelle Loesung
die musst du aber fuer n gegen [mm] \infty [/mm] nicht ansehen. dann ist die kleinere reelle loesung die mit [mm] -\wurzel{} [/mm] dann hast du also deine Loesung  hoch 6k zu nehmen oder [mm] (n*z_n [/mm] -n)^3k.
Wenn du erst k gegen Unendlich gehen laesst muss man wohl die Faelle bis 4 noch getrennt betrachten.
Gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]