matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikVerteilung bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Stochastik" - Verteilung bestimmen
Verteilung bestimmen < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verteilung bestimmen: Zweimaliger Würfelwurf
Status: (Frage) beantwortet Status 
Datum: 17:17 Mo 07.05.2012
Autor: bandchef

Aufgabe
Ein fairer Würfel wird zweimal geworfen. Es sei [mm] X_1 [/mm] die im ersten Wurf und [mm] X_2 [/mm] die im zweiten Wurf erzielte Augenzahl aus jeweils [mm] $\{ 1,2,...,6 \}. [/mm]

Ermitteln Sie die Verteilung von [mm] $Y:=max(X_1, X_2)$, [/mm] d.h. bestimmen Sie: $P(Y=k)$ für $k [mm] \in \{ 1,2,...,6 \}$ [/mm] oder [mm] $P(Y\leq [/mm] y)$ für $y [mm] \in \mathbb [/mm] R$

Hi Leute!

Ich hab hier einige Fragen zur obigen Aufgabe.

Ich hab mit der Aufgabe schon mal angefangen und das hier aufgeschrieben:

[mm] $(X_1, X_2) \Rightarrow$ [/mm]

[mm] $\underbrace{(1,1)}_{=1}, \underbrace{(1,2), (2,1), (2,2)}_{=3}, \underbrace{(3,1), (3,2), (3,3), (2,3), (1,3)}_{=5}$ [/mm]

[mm] $\underbrace{(4,1), (4,2), (4,3), (4,4), (3,4), (2,4), (1,4)}_{=7}, \underbrace{(5,1),(5,2),(5,3),(5,5),(4,5),(3,5),(2,5),(1,5)}_{=9}$ [/mm]

[mm] $\underbrace{(6,1), (6,2), (6,3), (6,4), (6,5), (6,6), (5,6), (4,6), (3,6), (2,6), (1,6)}_{=11}$ [/mm]

[mm] $\Rightarrow \frac{1 \cdot 3 \cdot 5 \cdot 7 \cdot 9 \cdot 11}{36} [/mm] = ?$

Wo ist dann hier die Verteilung zu sehen? Irgendwie kapier ich das Ganze nicht so :-(

        
Bezug
Verteilung bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:24 Mo 07.05.2012
Autor: tobit09

Hallo bandchef,


> [mm](X_1, X_2) \Rightarrow[/mm]
>  
> [mm]\underbrace{(1,1)}_{=1}, \underbrace{(1,2), (2,1), (2,2)}_{=3}, \underbrace{(3,1), (3,2), (3,3), (2,3), (1,3)}_{=5}[/mm]
>  
> [mm]\underbrace{(4,1), (4,2), (4,3), (4,4), (3,4), (2,4), (1,4)}_{=7}, \underbrace{(5,1),(5,2),(5,3),(5,5),(4,5),(3,5),(2,5),(1,5)}_{=9}[/mm]
>  
> [mm]\underbrace{(6,1), (6,2), (6,3), (6,4), (6,5), (6,6), (5,6), (4,6), (3,6), (2,6), (1,6)}_{=11}[/mm]

Zwar nicht lehrbuchmäßig aufgeschrieben, aber diese Überlegung werden wir noch brauchen.


> [mm]\Rightarrow \frac{1 \cdot 3 \cdot 5 \cdot 7 \cdot 9 \cdot 11}{36} = ?[/mm]

Nein.


Die nötigen Schritte werden sein:

1. Wir benötigen eine Grundmenge [mm] $\Omega$ [/mm] und ein Wahrscheinlichkeitsmaß P darauf.

2. Wie sehen [mm] $X_1,X_2$ [/mm] und somit $Y$ aus? Guck dir dazu an, wie Zufallsgrößen formal definiert sind und (am besten anhand eines Beispiels aus der Vorlesung) wie die formale Definition zur anschaulichen Bedeutung von Zufallsgrößen passt.

3. $P(Y=k)$ ist eine abkürzende Schreibweise für [mm] $P(\{Y=k\})$. [/mm] Wie ist das Ereignis [mm] $\{Y=k\}$ [/mm] definiert?

4. Wie sehen [mm] $\{Y=k\}$ [/mm] und somit $P(Y=k)$ für $k=1,2,3,4,5,6$ konkret aus?


Viele Grüße
Tobias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]