matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikVerzweigungsprozesse
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Stochastik" - Verzweigungsprozesse
Verzweigungsprozesse < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verzweigungsprozesse: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:29 Sa 28.01.2017
Autor: Noya

Aufgabe
Sei [mm] (Z_n)_{n\in\IN_0} [/mm] ein Verzweigungsprozess mit Startpopulation 1. Die Nachkommenverteilung
sei durch die Wahrscheinlichkeitsmassefunktion p(0) = p(2) [mm] =\bruch{1}{2} [/mm] gegeben.
a) Bestimme die Verteilung von [mm] Z_3. [/mm]
b) Berechne die Wahrscheinlichkeit dafür, dass dieser Verzweigungsprozess ausstirbt.


Hallo ihr Lieben,

ehrlich gesagt weiß ich gar nichts damit anzufangen.
Könnte mir da bitte einer mal auf die Sprünge helfen?


Eine Familie von [mm] \IN_0-wertigen [/mm] Zufallsvariablen [mm] (Z_n)_{n\in\IN_0} [/mm] nennt man Verzweigungsprozess
mit Nachkommenverteilung [mm] \alpha [/mm] und Startpopulation [mm] z_0 \in \IN_0, [/mm] wenn:
1) [mm] P(Z_0 [/mm] = [mm] z_0) [/mm] = 1
2) [mm] Z_{n+1} [/mm] = [mm] X^{n}_1 [/mm] + ... + [mm] X^{n}_Z_{n} [/mm] für jedes n [mm] \in \IN_0, [/mm] wobei
i) [mm] X^{n}_1 ,...,X^{n}_{Z_n} [/mm] unabhängig sind und die Verteilung [mm] \alpha [/mm] besitzen
ii) [mm] X^{n}_1 ,...,X^{n}_{Z_n} [/mm] von [mm] Z_n [/mm] unabhängig sind

Wir sagen, dass der Verzweigungsprozess   [mm] (Z_n)_{n\in\IN_0} [/mm] ausstirbt, wenn ein N [mm] \in \IN_0 [/mm] mit [mm] Z_N [/mm] = 0 existiert
(damit gilt natürlich automatisch [mm] Z_n [/mm] = 0 für alle n [mm] \ge [/mm] N).


und man kann wohl sehr gut mit Erzeugendenfkt hier arbeiten.
Dazu die Wiederhoilung aus dem Skript :

X ist [mm] \IN_0 [/mm] - wertig
[mm] G_X(s) [/mm] = [mm] E[s^X] \forall [/mm] s [mm] \in \IR [/mm] für die  [mm] E[s^X] [/mm] < [mm] \infty [/mm]
- Insbesondere wohldefiniert für  alle s [mm] \in [/mm] [0,1]
[mm] -X_1,...,X_k [/mm] unabhängig, so [mm] G_{\summe^{k}_{i=1}}(s) [/mm] = [mm] \produkt^{k}_{i=1}G_{X_i}(s) [/mm]
-E[X] = [mm] G_{X}'(1) [/mm]


Satz : Seien [mm] E[X_1] [/mm] = [mm] \mu [/mm] und Var [mm] (X_1) [/mm] = [mm] \sigma^2 \in (0,\infty) [/mm]
Dann gilt : [mm] E[Z_n] [/mm] = [mm] \mu^n [/mm] und
[mm] Var(Z_n)=\begin{cases} n\sigma^2, & \mbox{für } \mu =1 \\ \bruch{\sigma^2 \cdot \mu^{n-1} (\mu^n -1)}{\mu -1}, & \mbox{für }\mu \not= 1 \mbox{ ungerade} \end{cases} [/mm]



Ich soll nun die Verteilungsfkt von [mm] Z_3 [/mm] bestimmen.
Also [mm] Z_3 [/mm] = [mm] Z_{2+1} [/mm] = [mm] X^{2}_1 [/mm] + [mm] X^{2}_{Z_{1}}+ X^{2}_{Z_{2}}. [/mm] oder?

Die Nachkommenverteilung [mm] \alpha [/mm] sei durch die WKTmassefkt [mm] p(0)=p(2)=\bruch{1}{2} [/mm] gegeben.
wktmassefkt : [mm] p_X(x)=P(X=x) [/mm]

und da gilt E(X) [mm] =\sum_{x \in \IR} [/mm] x *P(X=x)


da ja gilt [mm] G_X(s) [/mm] = [mm] E[s^X] [/mm] = [mm] \sum s^x [/mm] *P(X=x)

wenn ich nun wüsste wie [mm] Z_3 [/mm] aussieht müsste ich ja die Erzeugendenfunktion bestimmen können mit Hilfe des Erwartungswertes und der Wktmassefkt oder?




Ich habe echt keine Ahnung...

Vielen Dank und schönes Wochenende.

Grüße Noya

        
Bezug
Verzweigungsprozesse: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:45 Mo 30.01.2017
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]