matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesVollständige Induktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Sonstiges" - Vollständige Induktion
Vollständige Induktion < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vollständige Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:04 Fr 23.10.2009
Autor: bambiland

Aufgabe
Zeigen Sie mithilfe vollständiger Induktion, dass [mm]\forall n \in\IN n^{3} - n[/mm] durch 6 teilbar ist.

Hallo,

ich habe schon mehrere Beispiele mit vollständiger Induktion gelöst, bin aber noch nie auf eines ohne Gleichung gestoßen und frage mich nun, wie man in so einem Fall vorgeht.
Muss man vielleicht eine Gleichung aufstellen?

Lg,
frani

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 20:08 Fr 23.10.2009
Autor: angela.h.b.


> Zeigen Sie mithilfe vollständiger Induktion, dass [mm]\forall n \in\IN n^{3} - n[/mm]
> durch 6 teilbar ist.
>  Hallo,
>  
> ich habe schon mehrere Beispiele mit vollständiger
> Induktion gelöst, bin aber noch nie auf eines ohne
> Gleichung gestoßen und frage mich nun, wie man in so einem
> Fall vorgeht.
> Muss man vielleicht eine Gleichung aufstellen?

Hallo,

ja, Du kannst Dir hier eine Gleichung draus machen. Überlege Dir, was es bedeutet, daß [mm] n^3-n [/mm] durch 6 teilbar ist:

es gibt ein [mm] k\in \IN [/mm] mit [mm] n^3-n=6k. [/mm]

Nun versuch mal.

Gruß v. Angela

Bezug
                
Bezug
Vollständige Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:58 Fr 23.10.2009
Autor: bambiland

danke...ich habe es jetzt mal ausprobiert und ausgerechnet, aber mir ist nicht klar, woher ich nun weiß, dass der letzte Ausdruck:

n³+3n²+2n=6k durch 6 teilbar ist?

lg frani

Bezug
                        
Bezug
Vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 21:05 Fr 23.10.2009
Autor: leduart

Hallo
du musst ja noch die Induktionsvors. benutzen
also schreib mal [mm] n³+3n²+2n=n^3-n +3n^2+3n [/mm]
und wenn ne Zahl durch 2 und 3 Teilbar ist, dann auch durch 6
kommst du damit weiter.
Gruss leduart


Bezug
                                
Bezug
Vollständige Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:26 Sa 24.10.2009
Autor: bambiland

hallo,
ich komme bei dem Induktionsschritt n+1 nicht weiter:

(n+1)³-(n+1)=6k

wo kann ich hier etwas einsetzten?das k ist doch ein anderes als oben, oder?
wenn ich mir das so ausrechne komme ich auf:

n³-n+3n+n+n²+2n=6k

hier könnte ich für n³-n, das 6k von der ausgegangenen Formel einsetzten, aber was bringt mir das?

lg frani

Bezug
                                        
Bezug
Vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 10:51 Sa 24.10.2009
Autor: steppenhahn

Hallo bambiland,

>  ich komme bei dem Induktionsschritt n+1 nicht weiter:
>  
> (n+1)³-(n+1)=6k
>  
> wo kann ich hier etwas einsetzten?das k ist doch ein
> anderes als oben, oder?

Ja, das ist ein anderes k. Du sollst aber auch nicht gleich am Anfang der Induktion von der Gleichung ausgehen, die du noch gar nicht bewiesen hast.
Beginne nur mit dem Term

[mm] $(n+1)^{3}-(n+1)$, [/mm]

da kannst du jetzt erstmal ausmultiplizieren:

[mm] $(n+1)^{3}-(n+1) [/mm] = [mm] (n^{3}+3*n^{2}+3*n+1) [/mm] - (n+1) = [mm] (n^{3}-n) [/mm] + [mm] (3*n^{2} [/mm] + 3*n)$

(du hattest da irgendwie was falsch ausmultipliziert).
Nun weißt du nach Induktionsvoraussetzung, dass sich [mm] $n^{3}-n$ [/mm] als $6*k$ mit [mm] $k\in\IN$ [/mm] darstellen lässt, also:

[mm] $(n^{3}-n) [/mm] + [mm] (3*n^{2} [/mm] + 3*n) = 6k + [mm] (3*n^{2} [/mm] + 3*n)$

Nun musst du nur noch zeigen, dass der rechte Summand auch durch 6 teilbar  ist.
Dann solltest du, um den Beweis abzuschließen, noch so einen Satz schreiben wie: "Da beide Summanden durch 6 teilbar sind, ist auch die Summe durch 6 teilbar".

Tipp: Der Term $n*(n+1)$ ist auf jeden Fall durch 2 teilbar, weil entweder n oder (n+1) gerade ist.

Grüße,
Stefan

Bezug
                                                
Bezug
Vollständige Induktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:19 Sa 24.10.2009
Autor: bambiland

Danke für die Hilfe,

lg frani

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]