matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExtremwertproblemeVolumen eines Quaders
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Extremwertprobleme" - Volumen eines Quaders
Volumen eines Quaders < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Volumen eines Quaders: Idee?!
Status: (Frage) beantwortet Status 
Datum: 10:51 Fr 20.11.2009
Autor: elixia.elixia

Aufgabe
Gesucht ist das maximale Volumen eines Quaders, dessen Raumdiagonale [mm] 2\wurzel{3} [/mm] cm ist.

Hallo,

ich wollte mit Langrange diese Aufgabe lösen, nur leider mache ich etwas falsch.

Ich habe als Hauptbedingung  a*b*c für das Volumen und als Nebenbedingung [mm] \wurzel{a^2+b^2+c^2}-2\wurzel{3} [/mm] bestimmt.

Ich vermute ganz stark, dass diese Bedingungen schon falsch sind oder?!

Zumindest kriege ich es nicht auf die Reihe die Seiten zu bestimmen.


LG Maike


        
Bezug
Volumen eines Quaders: Antwort
Status: (Antwort) fertig Status 
Datum: 10:59 Fr 20.11.2009
Autor: Al-Chwarizmi


> Gesucht ist das maximale Volumen eines Quaders, dessen
> Raumdiagonale [mm]2\wurzel{3}[/mm] cm ist.
>  Hallo,
>  
> ich wollte mit Langrange diese Aufgabe lösen, nur leider
> mache ich etwas falsch.
>  
> Ich habe als Hauptbedingung  a*b*c für das Volumen und als
> Nebenbedingung [mm]\wurzel{a^2+b^2+c^2}-2\wurzel{3}[/mm] bestimmt.
>  
> Ich vermute ganz stark, dass diese Bedingungen schon falsch
> sind oder?!


Nein, das passt eigentlich schon. Aber du kannst dir
die Rechnung erheblich einfacher machen, wenn du
als Nebenbedingung  [mm] a^2+b^2+c^2-k^2=0 [/mm] nimmst.
(k=Raumdiagonale).

LG   Al-Chw.

Bezug
                
Bezug
Volumen eines Quaders: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:21 Fr 20.11.2009
Autor: elixia.elixia

Danke. Probiere ich gleich mal aus.

LG Maike

Bezug
        
Bezug
Volumen eines Quaders: Antwort
Status: (Antwort) fertig Status 
Datum: 11:28 Fr 20.11.2009
Autor: fred97

Noch einfacher kannst Du die Rechnung machen, indem Du nicht das Volumen, sondern [mm] (Volumen)^2 [/mm] maximierst und zwar so:

Sei $F(a,b,c) = [mm] a^2b^2c^2$ [/mm] wegen [mm] $c^2= 12-(a^2+b^2)$ [/mm] kannst Du (ohne Lagrange) die Funktion

         $f(a,b) = [mm] a^2b^2(12-(a^2+b^2))$ [/mm]

maximieren

FRED



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]