matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungVolumenberechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integralrechnung" - Volumenberechnung
Volumenberechnung < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Volumenberechnung: Fragestellung
Status: (Frage) beantwortet Status 
Datum: 12:47 So 17.12.2006
Autor: x-changer

Aufgabe
Gegeben ist die Funktion [mm] f(x)=\bruch{-1}{1600} (x^4-164x^2+6400); [/mm] x -> R
K stellt für -8<=x<=8 den Querschnitt eines 500 m langen Kanals dar(x in meter, f(x) in meter). Die sich anschließende Landfläche liegt auf der Höhe y=0. Der Pegelstand wird in Bezug auf den tiefsten Punkt des Kanals gemessen und beträgt maximal 4 m.

Aufgabe: Wieviel Kubikmeter Wasser sind in dem Kanal, wenn er ganz gefüllt ist? Zu wie viel Prozent ist der Kanal bei einem Pegelstand von 1,00 m gefüllt?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Wie kriegt man das hin genau?
Bin nicht wirklich so bewandert in der Materie und habe nach meinen Berechnungen jetzt ein paar problemchen, wie's weitergehen soll ^^

mein ansatz ist folgender:

[mm] f(x)=\bruch{-1}{1600} x^4+\bruch{41}{400}x²-4 [/mm]

[mm] \integral_{-8}^{8}{(-1/1600 x^4+41/400 x^2-4) dx} [/mm]
[mm] F(x)=\bruch{-1}{8000} x^5+\bruch{41}{1200} [/mm] x³-4x  
                                
[mm] F(-8)=4\bruch{12}{125}-17\bruch{37}{75}+32=18\bruch{226}{375} [/mm]

F(8)= [mm] -4\bruch{12}{125}+17\bruch{37}{75}-32=-18\bruch{226}{375} [/mm]

F(8)-F(-8)=-18 [mm] \bruch{226}{375}-18\bruch{226}{375}=-37\bruch{77}{375} [/mm]

A=|F(8)-F(-8)|=|-37 [mm] \bruch{77}{375}|=37\bruch{77}{375} [/mm]  [FE]

allerdings erscheint mir 37 m³ etwas wenig für einen Kanal^^°
erbitte daher hilfe.


        
Bezug
Volumenberechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:36 So 17.12.2006
Autor: MichiNes

Hallo,

also ich hab jetzt nicht genau nachgerechnet, ob deine Flächenberechnung stimmt, aber gesucht ist ja das VOLUMEN des Kanals. Du hast bisher nur den Flächeninhalt des Querschnitts ausgerechnet.

Gruß Michi

Bezug
        
Bezug
Volumenberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:41 So 17.12.2006
Autor: Stefan-auchLotti


> Gegeben ist die Funktion [mm]f(x)=\bruch{-1}{1600} (x^4-164x^2+6400);[/mm]
> x -> R
>  K stellt für -8<=x<=8 den Querschnitt eines 500 m langen
> Kanals dar(x in meter, f(x) in meter). Die sich
> anschließende Landfläche liegt auf der Höhe y=0. Der
> Pegelstand wird in Bezug auf den tiefsten Punkt des Kanals
> gemessen und beträgt maximal 4 m.
>  
> Aufgabe: Wieviel Kubikmeter Wasser sind in dem Kanal, wenn
> er ganz gefüllt ist? Zu wie viel Prozent ist der Kanal bei
> einem Pegelstand von 1,00 m gefüllt?
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Wie kriegt man das hin genau?
>  Bin nicht wirklich so bewandert in der Materie und habe
> nach meinen Berechnungen jetzt ein paar problemchen, wie's
> weitergehen soll ^^
>  
> mein ansatz ist folgender:
>  
> [mm]f(x)=\bruch{-1}{1600} x^4+\bruch{41}{400}x²-4[/mm]
>  
> [mm]\integral_{-8}^{8}{(-1/1600 x^4+41/400 x^2-4) dx}[/mm]
>  
> [mm]F(x)=\bruch{-1}{8000} x^5+\bruch{41}{1200}[/mm] x³-4x  
>
> [mm]F(-8)=4\bruch{12}{125}-17\bruch{37}{75}+32=18\bruch{226}{375}[/mm]
>  
> F(8)=
> [mm]-4\bruch{12}{125}+17\bruch{37}{75}-32=-18\bruch{226}{375}[/mm]
>  
> F(8)-F(-8)=-18
> [mm]\bruch{226}{375}-18\bruch{226}{375}=-37\bruch{77}{375}[/mm]
>  
> A=|F(8)-F(-8)|=|-37 [mm]\bruch{77}{375}|=37\bruch{77}{375}[/mm]  
> [FE]
>
> allerdings erscheint mir 37 m³ etwas wenig für einen
> Kanal^^°
>  erbitte daher hilfe.
>  

[mm] $\rmfamily \text{Hi,}$ [/mm]

[mm] $\rmfamily \text{Du sagst ja selbst, dass du [FE] ausgerechnet hast. Ein Volumen ist aber dreifach abhängig -- von der Breite,}$ [/mm]
[mm] $\rmfamily \text{Höhe (durch das Integral korrekt berechnet) und aber eben noch die Länge! Der Kanal ist 500\,m lang, kommst}$ [/mm]
[mm] $\rmfamily \text{du jetzt auf den Lösungsweg?}$ [/mm]


[mm] $\rmfamily \text{Stefan.}$ [/mm]

Bezug
                
Bezug
Volumenberechnung: Thx
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:22 So 17.12.2006
Autor: x-changer

Yo. Da war ich wohl etwas abwesend.
Ist also die 3. fehlende Komponente ^^°

Thx.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]