matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenstochastische ProzesseVon ZV erzeigte Sigma-Algebra
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "stochastische Prozesse" - Von ZV erzeigte Sigma-Algebra
Von ZV erzeigte Sigma-Algebra < stoch. Prozesse < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Prozesse"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Von ZV erzeigte Sigma-Algebra: Verständnisfrage
Status: (Frage) beantwortet Status 
Datum: 17:10 Sa 10.03.2012
Autor: barsch

Hallo,

ich beschäftige mich gerade mit Martingalen und habe eine Verständnisfrage.

Angenommen [mm]X:(\Omega,F)\to(E,\varepsilon)[/mm] ist Zufallsvariable. Dann ist [mm]\sigma(X)=\left \{ X^{-1}(A):A\in E \right \}[/mm].

Habe ich nun einen stochastischen Prozess [mm](X_i)_{i\in \IN}[/mm], so habe ich nun folgende Definition:

[mm]F_n=\sigma(X_1,...,X_n)[/mm].

Ist [mm]\sigma(X_1,...,X_n)\red{=}\bigcup_{i=1}^{n} \sigma(X_i)[/mm], oder wie kann ich das verstehen?

Danke für jede Hilfe.

Gruß
barsch


        
Bezug
Von ZV erzeigte Sigma-Algebra: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Sa 10.03.2012
Autor: barsch

Ich sehe

> Ist [mm]\sigma(X_1,...,X_n)\red{=}\bigcup_{i=1}^{n} \sigma(X_i)[/mm],

kann nicht sein, da die Vereinigung von [mm]\sigma[/mm]-Algebren i.A. keine [mm]\sigma[/mm]-Algebra ist.


Gruß
barsch (immer noch ahnungslos)



Bezug
        
Bezug
Von ZV erzeigte Sigma-Algebra: Antwort
Status: (Antwort) fertig Status 
Datum: 18:59 Sa 10.03.2012
Autor: Gonozal_IX

Hiho,

du hast ja selbst schon erkannt, dass dein Gleichheit nicht gilt.
Fürs Verständnis ist es aber eben genau das, nämlich:

[mm] $\sigma\left(X_1,\ldots,X_n\right)$ [/mm] ist die kleinste [mm] $\sigma$-Algebra, [/mm] so dass die Zufallsvariablen [mm] $X_1,\ldots,X_n$ [/mm] meßbar sind.

Nicht mehr, aber auch nicht weniger ;-)

MFG,
Gono.

Bezug
                
Bezug
Von ZV erzeigte Sigma-Algebra: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:34 Sa 10.03.2012
Autor: barsch

Hallo,


> Hiho,
>  
> du hast ja selbst schon erkannt, dass dein Gleichheit nicht
> gilt.
> Fürs Verständnis ist es aber eben genau das, nämlich:
>  
> [mm]\sigma\left(X_1,\ldots,X_n\right)[/mm] ist die kleinste
> [mm]\sigma[/mm]-Algebra, so dass die Zufallsvariablen [mm]X_1,\ldots,X_n[/mm]
> meßbar sind.

okay, danke.


> Nicht mehr, aber auch nicht weniger ;-)

[grins]

> MFG,
>  Gono.

Gruß
barsch


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Prozesse"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]