matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisWErt der Reihe 1/n^2
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis" - WErt der Reihe 1/n^2
WErt der Reihe 1/n^2 < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

WErt der Reihe 1/n^2: Grenzwertbestimmung
Status: (Frage) beantwortet Status 
Datum: 16:38 Do 30.06.2005
Autor: Grave

Hallo.

Ich habe diese Frage sonst noch nirgendwo gestellt.

Der StochastikProf hat heute behauptet, dass die Reihe [mm] 1/n^2 [/mm] gegen [mm] (pi^2)/6 [/mm] konvergiert. Ich habe versucht dieses nachzuvollziehen. LEider ist es mir nicht gelungen, die nachzuweisen. Habe versucht, es über differenzieren und integriene versucht, in dem ich die Reihe [mm] x/n^2 [/mm] betrachtet habe, und wollte dann später x = 1 setzen.

Deshablb meine Frage:

Wie zeige ich den Grenzwert der Reihe?

Vielen Dank für eine Antwort. GRAVE

        
Bezug
WErt der Reihe 1/n^2: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:54 Do 30.06.2005
Autor: angela.h.b.

Hallo,

in meinem Buch steht, daß man es beispielsweise mit der Theorie der Fourier-Reihen zeigen kann.
Vielleicht bringt Dich das weiter.

Ach, noch eines: in meinem Analysisbuch wird zwar die Reihe [mm]1/n^4[/mm] vorgerechnet, ebenso in meinem NuMa-Skript. Von [mm]1/n^2[/mm] wird der Grenzwert genannt, aber der Beweis? Fehlanzeige. Ich schließe daraus mal: dürfte schwieriger sein als die Reihe [mm]1/n^4[/mm].

Gruß v. Angela

Bezug
        
Bezug
WErt der Reihe 1/n^2: Antwort
Status: (Antwort) fertig Status 
Datum: 19:02 Do 30.06.2005
Autor: Lanford

Hallo

Rechne mal die Fourierreihe zu $f(t) = [mm] t^2$ [/mm] mit Periode $2 [mm] \pi$ [/mm] aus, also $f(t) = [mm] \sum_{n=-\infty}^\infty c_n e^{int} [/mm]  ,   [mm] c_n [/mm] = [mm] \dfrac{1}{2\pi}\int_{-\pi}^{\pi} [/mm] f(t) [mm] e^{-int} [/mm] dt$ und setze dann [mm] $t=\pi$ [/mm] ein.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]