matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Wachstumsaufgabe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Mathe Klassen 8-10" - Wachstumsaufgabe
Wachstumsaufgabe < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wachstumsaufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:14 Fr 04.06.2004
Autor: VeniceQueen

Ich hab hier ne Aufgabe aus nem Buch von der Bücherei und irgendwie check ich nich wie das gehn soll...

Herr Müller legt 12 400DM zu einem Zinssatz von 6% bei einer Bank an.
Im wievielten Jahr betragen die Zinsen zum ersten mal mehr als 1000DM?

Es handelt sich ja um exponentielles Wachstum mit der Formel
[mm] B(t)=12400*1,06^t [/mm]

aber was ich wissen will ist ja nicht wann der Bestand zum ersten mal mehr als 13 400 ist, sondern wann der Unterschied zum Vorjahresbestand zum ersten Mal mehr als 1000 ist.
Bei ner Aufgabe mit beschränktem oder logistischen Wachstum würde man jetzt ja ne Tabelle machen und einfach so lange rechnen, bis der Unterschied mehr als 1000 ist (das hab ich jetzt auch gemacht, die Lösung war 7 Jahre) aber bei exponentiellem Wachstum muss das doch eigentlich auch anders gehn, oder?

Hat jemand ne Idee, wie ich das OHNE Ausprobieren mit einer Rechnung machen kann?

Danke schonmal!

ach ja, hier hab ich die Frage schon gestellt:

[]http://www.forum.klassenarbeiten.de/viewtopic.php?t=1417


        
Bezug
Wachstumsaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 23:25 Fr 04.06.2004
Autor: Fugre


> Ich hab hier ne Aufgabe aus nem Buch von der Bücherei und
> irgendwie check ich nich wie das gehn soll...
>
> Herr Müller legt 12 400DM zu einem Zinssatz von 6% bei
> einer Bank an.
> Im wievielten Jahr betragen die Zinsen zum ersten mal mehr
> als 1000DM?
>
> Es handelt sich ja um exponentielles Wachstum mit der
> Formel
> [mm] B(t)=12400*1,06^t [/mm]
>
> aber was ich wissen will ist ja nicht wann der Bestand zum
> ersten mal mehr als 13 400 ist, sondern wann der
> Unterschied zum Vorjahresbestand zum ersten Mal mehr als
> 1000 ist.

Du willst also wissen wann 6% deines Betrages größer sind als 1000DM

> Bei ner Aufgabe mit beschränktem oder logistischen Wachstum
> würde man jetzt ja ne Tabelle machen und einfach so lange
> rechnen, bis der Unterschied mehr als 1000 ist (das hab ich
> jetzt auch gemacht, die Lösung war 7 Jahre) aber bei
> exponentiellem Wachstum muss das doch eigentlich auch
> anders gehn, oder?
>
> Hat jemand ne Idee, wie ich das OHNE Ausprobieren mit einer
> Rechnung machen kann?
>

Das wissen wir:

$ [mm] B(t)=12400*1,06^t [/mm] $
$ B(t)*0,06=1000 $

Formen wir beides nach $ B(t) $ um, dann steht da:

$ [mm] B(t)=12400*1,06^t [/mm] $
$ B(t)=16666+2/3 $
$ [mm] 12400*1,06^t=16666+2/3 [/mm] $
$ [mm] 1,06^t=125/93 [/mm] $
$ 1,06 log (125/93)=t $
$ t=5.073893635897857 $

Uns interessieren ja nur die vollen Jahre, also müssen wir aufrunden auf 6 Jahre.

> Danke schonmal!
>  
> ach ja, hier hab ich die Frage schon gestellt:
>  
>
> http://www.forum.klassenarbeiten.de/viewtopic.php?t=1417&sid=ca6e12d9cf09abe67a432435cdbb7d5b
>  
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]