matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikWahrscheinlichkeiten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Stochastik" - Wahrscheinlichkeiten
Wahrscheinlichkeiten < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeiten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:25 Sa 25.10.2008
Autor: barsch

Aufgabe
An einer Häuserreihe (mit n Häusern) wurden die Hausnummern abgenommen. Jetzt soll jeder der n Bewohner zufällig in ein Haus gehen (pro Haus nur ein Bewohner). Wie groß ist die Wkt, dass

a) keiner in seinem eigenen Haus ist.

b) genau k, [mm] 0\le{k}\le{n}, [/mm] in ihr eigenes Haus gegangen sind.

Hi,

zugegeben eine merkwürdige Aufgabe. Zur

a) Diese Aufgabe ist ja nicht so schwer. Die Wkt ergibt sich aus

[mm] \bruch{n-1}{n}*\bruch{n-2}{n-1}*\bruch{n-3}{n-2}*...*1=\bruch{1}{n} [/mm]

b) Hier fehlt mir ein Ansatz.

Ich habe einmal anhand von n=4 Häusern versucht, eine Gesetzmäßigkeit zu entdecken, aber gelungen ist es mir nicht.

Vielleicht habt ihr eine Idee, wie an die b) heranzugehen ist?

MfG barsch

        
Bezug
Wahrscheinlichkeiten: Antwort
Status: (Antwort) fertig Status 
Datum: 20:53 Sa 25.10.2008
Autor: luis52

Moin barsch,

ich muss die enttaeuschen, deine Loesung stimmt bereits fuer $n=4$ nicht.

Sieh es einmal so: Wenn n Personen die Haeuser betreten, so entspricht
das einer Permutation [mm] $\sigma:\{1,2,\dots,n\}\to\{1,2,\dots,n\}$, [/mm] die kurz in
der Form [mm] $(\sigma(1),\sigma(2),\dots,\sigma(n))$ [/mm] geschrieben werden kann.
Ein Fixpunkt ist eine Zahl i mit [mm] $\sigma(i)=i$. [/mm]

Unter a) sind alle [mm] $\sigma:\{1,2,3,4\}\to\{1,2,3,4\}$ [/mm] gesucht, die keinen
Fixpunkt aufweisen. Hiervon gibt es 9:

1:
2:  2    3    4    1
3:  3    1    4    2
4:  2    1    4    3
5:  3    4    1    2
6:  3    4    2    1
7:  2    4    1    3
8:  4    1    2    3
9:  4    3    1    2
10:  4    3    2    1


Da es $n!=4!=24$ Permutationen gibt, ist die gesuchte Wsk
[mm] $9/24=0.375\ne1/4$. [/mm] Der allgemeine Fall wird []hier behandelt.

Das 2. Problem stellt sich nun so dar: Gesucht sind alle [mm] $\sigma$ [/mm] mit
[mm] $k=0,1,\dots,n$ [/mm] Fixpunkten.

vg Luis              

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]