matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTopologie und GeometrieWegzusammenhang vom Schnitt
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Topologie und Geometrie" - Wegzusammenhang vom Schnitt
Wegzusammenhang vom Schnitt < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wegzusammenhang vom Schnitt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:50 Sa 03.12.2011
Autor: skoopa

Hallöchen!
Ich hab mir grad mal ein paar Gedanken zum Thema Zusammenhang gemacht und hänge jetzt gerade bei folgendem Problem:
Seien $A,B$ offene wegzusammenhängende Mengen und sei [mm] $A\cap B\not=\emptyset$ [/mm] und zusammenhängend. Dann, so vermute ich, ist [mm] $A\cap [/mm] B$ wegzusammenhängend.
Ich finde das ganze anschaulich irgendwie klar.
Aber hab Probleme daraus ein klares Argument zu bauen.
Also wenn [mm] $A\cap [/mm] B$ zusammenhängend ist, so kann ich diesen Schnitt nicht in zwei offene, nichtleere, disjunkte Mengen zerlegen.
Wenn ich annehme [mm] $A\cap [/mm] B$ wäre nicht wegzusammenhängend, so gäbe es mindestens zwei Wegzusammenhangskomponenten.
Aber irgendwie krieg ich keinen gescheiden Widerspruch hin...
Kann mir jemand vielleicht auf die Sprünge helfen?
Das wär super klasse!
Beste Grüße!
skoopa

        
Bezug
Wegzusammenhang vom Schnitt: Antwort
Status: (Antwort) fertig Status 
Datum: 17:25 Sa 03.12.2011
Autor: fred97


> Hallöchen!
>  Ich hab mir grad mal ein paar Gedanken zum Thema
> Zusammenhang gemacht und hänge jetzt gerade bei folgendem
> Problem:
>  Seien [mm]A,B[/mm] offene wegzusammenhängende Mengen und sei [mm]A\cap B\not=\emptyset[/mm]
> und zusammenhängend. Dann, so vermute ich, ist [mm]A\cap B[/mm]
> wegzusammenhängend.


Das ist falsch !

Male auf ein Papier den Buchstaben C, sagen wir 1 cm dick. Das gleiche machst Du mit dem I. Jetzt schieb das I auf das C , bis Du zwei Zusammenhangskomponenten hast.

FRED

>  Ich finde das ganze anschaulich irgendwie klar.
>  Aber hab Probleme daraus ein klares Argument zu bauen.
>  Also wenn [mm]A\cap B[/mm] zusammenhängend ist, so kann ich diesen
> Schnitt nicht in zwei offene, nichtleere, disjunkte Mengen
> zerlegen.
>  Wenn ich annehme [mm]A\cap B[/mm] wäre nicht wegzusammenhängend,
> so gäbe es mindestens zwei Wegzusammenhangskomponenten.
>  Aber irgendwie krieg ich keinen gescheiden Widerspruch
> hin...
>  Kann mir jemand vielleicht auf die Sprünge helfen?
>  Das wär super klasse!
>  Beste Grüße!
>  skoopa


Bezug
                
Bezug
Wegzusammenhang vom Schnitt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:40 Sa 03.12.2011
Autor: skoopa

Danke für die Antwort!

> > Hallöchen!
>  >  Ich hab mir grad mal ein paar Gedanken zum Thema
> > Zusammenhang gemacht und hänge jetzt gerade bei folgendem
> > Problem:
>  >  Seien [mm]A,B[/mm] offene wegzusammenhängende Mengen und sei
> [mm]A\cap B\not=\emptyset[/mm]
> > und zusammenhängend. Dann, so vermute ich, ist [mm]A\cap B[/mm]
> > wegzusammenhängend.
>  
>
> Das ist falsch !
>  
> Male auf ein Papier den Buchstaben C, sagen wir 1 cm dick.
> Das gleiche machst Du mit dem I. Jetzt schieb das I auf das
> C , bis Du zwei Zusammenhangskomponenten hast.
>  
> FRED

Aber dann ist doch der Schnitt nicht mehr zusammenhängend oder?
Also genau durch das Beispiel bin ich auf die ganze Sache gekommen...

>  >  Ich finde das ganze anschaulich irgendwie klar.
>  >  Aber hab Probleme daraus ein klares Argument zu bauen.
>  >  Also wenn [mm]A\cap B[/mm] zusammenhängend ist, so kann ich
> diesen
> > Schnitt nicht in zwei offene, nichtleere, disjunkte Mengen
> > zerlegen.
>  >  Wenn ich annehme [mm]A\cap B[/mm] wäre nicht
> wegzusammenhängend,
> > so gäbe es mindestens zwei Wegzusammenhangskomponenten.
>  >  Aber irgendwie krieg ich keinen gescheiden Widerspruch
> > hin...
>  >  Kann mir jemand vielleicht auf die Sprünge helfen?
>  >  Das wär super klasse!
>  >  Beste Grüße!
>  >  skoopa
>  


Bezug
                        
Bezug
Wegzusammenhang vom Schnitt: Antwort
Status: (Antwort) fertig Status 
Datum: 10:13 So 04.12.2011
Autor: fred97


> Danke für die Antwort!
>  
> > > Hallöchen!
>  >  >  Ich hab mir grad mal ein paar Gedanken zum Thema
> > > Zusammenhang gemacht und hänge jetzt gerade bei folgendem
> > > Problem:
>  >  >  Seien [mm]A,B[/mm] offene wegzusammenhängende Mengen und sei
> > [mm]A\cap B\not=\emptyset[/mm]
> > > und zusammenhängend. Dann, so vermute ich, ist [mm]A\cap B[/mm]
> > > wegzusammenhängend.
>  >  
> >
> > Das ist falsch !
>  >  
> > Male auf ein Papier den Buchstaben C, sagen wir 1 cm dick.
> > Das gleiche machst Du mit dem I. Jetzt schieb das I auf das
> > C , bis Du zwei Zusammenhangskomponenten hast.
>  >  
> > FRED
>  
> Aber dann ist doch der Schnitt nicht mehr zusammenhängend
> oder?

Ja, i.a. nicht.

FRED


>  Also genau durch das Beispiel bin ich auf die ganze Sache
> gekommen...
>  
> >  >  Ich finde das ganze anschaulich irgendwie klar.

>  >  >  Aber hab Probleme daraus ein klares Argument zu
> bauen.
>  >  >  Also wenn [mm]A\cap B[/mm] zusammenhängend ist, so kann ich
> > diesen
> > > Schnitt nicht in zwei offene, nichtleere, disjunkte Mengen
> > > zerlegen.
>  >  >  Wenn ich annehme [mm]A\cap B[/mm] wäre nicht
> > wegzusammenhängend,
> > > so gäbe es mindestens zwei Wegzusammenhangskomponenten.
>  >  >  Aber irgendwie krieg ich keinen gescheiden
> Widerspruch
> > > hin...
>  >  >  Kann mir jemand vielleicht auf die Sprünge helfen?
>  >  >  Das wär super klasse!
>  >  >  Beste Grüße!
>  >  >  skoopa
> >  

>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]