matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenWieder Globale Extrema
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Funktionen" - Wieder Globale Extrema
Wieder Globale Extrema < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wieder Globale Extrema: Hilfe, Tipp
Status: (Frage) beantwortet Status 
Datum: 12:46 So 19.02.2012
Autor: Bilmem

Aufgabe
Die auf dem abgeschlossenen Intervall [0,1] durch

[mm] f(x):=\begin{cases} (x^2)^x, & \mbox{für } x\in (0,1] \\ 1, & \mbox{für } x=0 \end{cases} [/mm]
        
definierte reelle Funktion ist stetig und nimmt nach einem Satz aus der Vorlesung auf ihrer Definitionsmenge jeweils das globale Maximum und das globale Minimum an. Bestimmen Sie jeweils alle globalen Maximumstellen und alle globalen Mimimumstellen und geben Sie das globale Maximum und das globale Minimum an!


Wenn man jetzt in die erste Funktion x=1 einsetzt, hat man doch den höchsten Punkt gefunden und bei der 2. Funktion ist das ja schon gegeben, dass f(0)=1 ist und in die erste Funktion kann man die Null nicht einsetzen, habe ich jetzt also zweimal 1 raus oder wie funktioniert die Aufgabe?  :/

        
Bezug
Wieder Globale Extrema: Antwort
Status: (Antwort) fertig Status 
Datum: 12:59 So 19.02.2012
Autor: Adamantin


> Die auf dem abgeschlossenen Intervall [0,1] durch
>  
> [mm]f(x):=\begin{cases} (x^2)^x, & \mbox{für } x\in (0,1] \\ 1, & \mbox{für } x=0 \end{cases}[/mm]
>  
>          
> definierte reelle Funktion ist stetig und nimmt nach einem
> Satz aus der Vorlesung auf ihrer Definitionsmenge jeweils
> das globale Maximum und das globale Minimum an. Bestimmen
> Sie jeweils alle globalen Maximumstellen und alle globalen
> Mimimumstellen und geben Sie das globale Maximum und das
> globale Minimum an!
>  
> Wenn man jetzt in die erste Funktion x=1 einsetzt, hat man
> doch den höchsten Punkt gefunden und bei der 2. Funktion
> ist das ja schon gegeben, dass f(0)=1 ist und in die erste
> Funktion kann man die Null nicht einsetzen, habe ich jetzt
> also zweimal 1 raus oder wie funktioniert die Aufgabe?  :/

stimmt, [mm] $(1^2)^1=1$. [/mm] Da bei 0 der y-Wert direkt angegeben ist, haben wir auch dort den Maixmalwert 1.Damit hast du als golabe Maximal zwei mal den Wert 1, bzw. 2 Maximalstellen. Das war doch beim ersten Beispiel (das von gestern) nicht anders. Die Funktion darf doch zwei mal ein Maximum annehmen, oder spricht etwas dagegen?
Bei den globalen Minima wird es schon interessanter, dieses kann ja nur bei der ersten Funktion liegen.


Bezug
                
Bezug
Wieder Globale Extrema: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:11 So 19.02.2012
Autor: Bilmem

Ja, jetzt müsste ich doch 1. Ableitung von der ersten Funktion bilden.

f'(x)= [mm] (x^2)^x [/mm] * [mm] (ln(x^2+2) [/mm] (wobei ich nicht weiß, wie man eine Ableitung von so einer Funktion bildet :S Hab das Ergebnis mit Wolfram bekommen)

Dann Nullsetzen und x berechnen, aber iwie habe ich im Moment Probleme damit. Ich würde jetzt [mm] (x^2)^x [/mm] als [mm] e^{x*lnx^2} [/mm] darstellen, aber weiß nicht, ob es der richtige Schritt ist ?!

Eine weitere Frage ist, dass die 1. Funktion im Punkt 0 gar nicht definiert ist, wie muss ich damit umgehen.

Vielen Dank Adamantin!

Bezug
                        
Bezug
Wieder Globale Extrema: Antwort
Status: (Antwort) fertig Status 
Datum: 14:04 So 19.02.2012
Autor: Adamantin


> Ja, jetzt müsste ich doch 1. Ableitung von der ersten
> Funktion bilden.
>  
> f'(x)= [mm](x^2)^x[/mm] * [mm](ln(x^2+2)[/mm] (wobei ich nicht weiß, wie man
> eine Ableitung von so einer Funktion bildet :S Hab das
> Ergebnis mit Wolfram bekommen)

Genau mit deiner unten angegebenen Formel. Du schreibst es in eine Funktion mit der natürlichen E-Fkt um und leitest dann mittels Kettenregel die e-Funktion ab. Aber für das Verständnis ist Wolfram völlig legitim. Aber du hast einen Fehler, die 2 steht nicht im Logarithmus! Die richtige Ableitung lautet:

[mm] $f'(x)=(x^2)^x*(log(x^2)+2)$ [/mm]

>  
> Dann Nullsetzen und x berechnen, aber iwie habe ich im
> Moment Probleme damit. Ich würde jetzt [mm](x^2)^x[/mm] als
> [mm]e^{x*lnx^2}[/mm] darstellen, aber weiß nicht, ob es der
> richtige Schritt ist ?!

Du hast ein Produkt, also muss [mm] $(x^2)^x$ [/mm] gleich 0 sein oder [mm] (lnx^2+2). [/mm] Der linke Term kann niemals 0 werden! Höchstens für x gegen minus Unendlich. Ansonsten hast du nur positive Terme, das wird nie null.
Den rechten Term kannst du auflösen und die NST berechnen!

>  
> Eine weitere Frage ist, dass die 1. Funktion im Punkt 0 gar
> nicht definiert ist, wie muss ich damit umgehen.

Wozu brauchst du das? Du hast eine Definition in diesem Punkt, nämlich dass die Fkt dort 1 ist. Damit brauchst du hier nach keinen Minima zu suchen. Du hast ja schon alle Extrema bestimmt, uns interessieren nur Minima, das kann aber niemals bei x=0 liegen, denn dort ist bereits ein Maximum, nämlich 1. Also muss das Minimum zwischen 0 und 1 liegen.

>  
> Vielen Dank Adamantin!


Bezug
                                
Bezug
Wieder Globale Extrema: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:44 So 19.02.2012
Autor: Bilmem

Ich kann das iwie nicht ausrechnen :S

[mm] (2+ln(x^2))*(x^2)^x= [/mm] 0

[mm] 2+ln(x^2) [/mm] = 0 | -2

[mm] ln(x^2) [/mm] = -2

2 * ln(x) = -2 |:2

ln(x)    = -1

wie geht das jetzt weiter? :/

Bezug
                                        
Bezug
Wieder Globale Extrema: Antwort
Status: (Antwort) fertig Status 
Datum: 18:03 So 19.02.2012
Autor: MathePower

Hallo Bilmem,


> Ich kann das iwie nicht ausrechnen :S
>  
> [mm](2+ln(x^2))*(x^2)^x=[/mm] 0
>  
> [mm]2+ln(x^2)[/mm] = 0 | -2
>  
> [mm]ln(x^2)[/mm] = -2
>  
> 2 * ln(x) = -2 |:2
>  
> ln(x)    = -1
>  
> wie geht das jetzt weiter? :/


Wende auf beide Seiten die Exponentialfunktion an.


Gruss
MathePower

Bezug
                                                
Bezug
Wieder Globale Extrema: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:38 So 19.02.2012
Autor: Bilmem

Wie mache ich das ? :/

Bezug
                                                        
Bezug
Wieder Globale Extrema: Antwort
Status: (Antwort) fertig Status 
Datum: 18:45 So 19.02.2012
Autor: MathePower

Hallo Bilmem,


> Wie mache ich das ? :/


So:

[mm]e^{\ln\left(x\right)}=e^{-1}[/mm]


Gruss
MathePower

Bezug
                                                        
Bezug
Wieder Globale Extrema: Antwort
Status: (Antwort) fertig Status 
Datum: 18:52 So 19.02.2012
Autor: Al-Chwarizmi


> Wie mache ich das ? :/


Deine vorherige Gleichung war:

   ln(x)  =  -1

Beidseitig Exponentialfunktion anwenden liefert:

  $\ [mm] e^{ln(x)}\ [/mm] =\ [mm] e^{-1}$ [/mm]

Wenn's da auch noch Probleme geben sollte, dann
schau dir deine Unterlagen zu den Themen
Exponentialfunktion, Logarithmus, e und ln nochmals
ausführlich durch !

LG


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]