matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVektorenWinkel zwischen Vektoren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Vektoren" - Winkel zwischen Vektoren
Winkel zwischen Vektoren < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Winkel zwischen Vektoren: Bitte um Korrektur
Status: (Frage) beantwortet Status 
Datum: 00:12 Mi 10.01.2007
Autor: Snowie

Aufgabe
Hallo,

kann bitte mal jemand hier drüberschaun? Danke :-)

3. Berechnen Sie die Winkel (Richtungsunterschied) zwischen den angegebenen Vektoren.

a) u=[2, 1, -1]; v=[3, 0.5, 1]
b) Das Skalarprodukt von u und v ist 1, u hat die Länge 3 und v ist halb so lang.
c) u=[a, a, a]; v=[1, -1, 2]



5. Gegeben sind die vier Punkte A(1, 1, 0), B(5, 1, 0), C(3, 4, 0) und D(3, 2, 3). Wenn Sie diese Punkte durch Kanten verbinden, entsteht eine Pyramide mit dreieckiger Grundfläche.

a) Berechnen Sie alle 6 Kantenlängen.

b) Wir betrachten das Dreieck ABC als Bodenfläche. Berechnen Sie den Winkel, den die Kante AD zur Bodenfläche hat.

Ein Tipp: Bestimmen Sie einen Vektor, der zu den Bodenkanten senkrecht steht und benutzen Sie diesen für die Rechnung.

Meine Lösungen :

3.
a) u * v = 6 + 0,5 - 1 = 5,5
   /u/ = [mm] \wurzel{4+1+1}= \wurzel{6} [/mm]
   /v/ = [mm] \wurzel{9 + 0,25 + 1} [/mm] = [mm] \wurzel{10,25} [/mm]

[mm] \bruch{5,5}{\wurzel{6} * \wurzel{10,25}} [/mm] = 0,70

Winkel = 45,47 °

b) [mm] \bruch{1}{3 * 1,5}= \bruch{1}{4,5}= [/mm] 0,22

c) u * v = a - a + 2 a

/u/ = [mm] \wurzel{3 a²} [/mm] = a [mm] \wurzel{3}= [/mm] 1,73 a
/v/ = [mm] \wurzel{1+1+4} [/mm] = [mm] \wurzel{6} [/mm]

cos [mm] \alpha [/mm] = [mm] \bruch{2 a}{\wurzel{6} * \wurzel{3}} [/mm] = 0,47

[mm] \alpha [/mm] = 61,87 °

5.
a)
[mm] \overrightarrow{DA} [/mm] = (1/1/0) - ( 3/2/3) = (-2/-1/-3)
[mm] \overrightarrow{DB} [/mm] = (5/1/0) - ( 3/2/3) = (2/-1/-2)
[mm] \overrightarrow{DC} [/mm] = (3/4/0) - ( 3/2/3) = (0/2/-3)
[mm] \overrightarrow{AB} [/mm] = (5/1/0) - ( 1/1/0) = (4/0/0)
[mm] \overrightarrow{AC} [/mm] = (3/4/0) - ( 1/1/0) = (2/3/0)
[mm] \overrightarrow{BC} [/mm] = (3/4/0) - ( 5/1/0) = (-2/3/0)

/DA/ = [mm] \wurzel{4+1+9} [/mm] = [mm] \wurzel{14}= [/mm] 3,74
/DB/ = [mm] \wurzel{4+1+4} [/mm] = 3
/DC/ = [mm] \wurzel{4+9} [/mm] = [mm] \wurzel{13}= [/mm] 3,61
/AB/ = 4
/AC/ = [mm] \wurzel{4+9} [/mm] = 3,61
/BC/ = [mm] \wurzel{4+9} [/mm] = 3,61

b)

Ich habe keine Ahnung. Klar die Senkrechte ist die Höhe. Aber ich habe keine Ahnung wo die in der Grundfläche liegt und noch viel weniger, wie sich der Vektor berechnet. Hat hier jemand einen etwas deutlicheren Tip?

        
Bezug
Winkel zwischen Vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 00:55 Mi 10.01.2007
Autor: riwe

der tip ist deutlich genug!
schau dir die punkte A, B und C an, vor allem die z- komponente: die liegen alle in der xy-ebene mit dem normalenvektor [mm] \vec{n}=\vektor{0\\0\\1}. [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]