matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenWronski-Determinante
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gewöhnliche Differentialgleichungen" - Wronski-Determinante
Wronski-Determinante < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wronski-Determinante: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:22 Sa 07.01.2006
Autor: majorlee

hi,
hab eine kurze frage zur wronski-determinante.
in vielen büchern und sonstigen quellen steht, dass die wronski-determinante bekanntlicherweise folgende DGL erfüllt:
wenn w die wronski-determinante ist, dann gilt: w'=Spur \left( A(t) \right) \cdot w. so weit, so gut. danach steht immer, dass hieraus folgt, dass daher entweder immer w \equiv 0 gilt, oder w \ne 0 . wieso ist das so? es kann sein, dass ich vollkommen auf dem schlauch stehe, aber irgendwie wird mir der zusammenhang da nicht ganz klar.
kann mir das jemand einleuchtend erklären? danke.

        
Bezug
Wronski-Determinante: Antwort
Status: (Antwort) fertig Status 
Datum: 21:10 Sa 07.01.2006
Autor: pjordan

Hallo erstmal, du hast die Ehre, dass dies die erste Lösung ist, die ich hier schreibe..... Aber zum Problem:

Also, ich denke man sieht es, wenn man sich die Lösung der DGL betrachtet (Satz von Liouville): Jene lautet $W(t) = [mm] W(\tau) \exp{\int_\tau^t spur (A(s))ds} [/mm] $ für alle $t, [mm] \tau \in [/mm] J$.

Warum ist das so?! Also, eine Determinante ist eine alternierende m-lineare Funktion (K=Körper)
[mm] $K^m \times ....\times [/mm] K [mm] \rightarrow [/mm] K $ , damit bekommen wir
[mm] $\dot [/mm] W(t) = [mm] \dot{(det X)}(t) [/mm] = [mm] \sum_{j=1}^m \det[x_1(t),....,x_{j-1}(t), \dot x_j(t), x_{j+1},....x_m [/mm] (t)] $ für $t [mm] \in [/mm] J $,
das bedeutet in unserem Falle [mm] $\dot [/mm] W = (det [mm] X)^{.} [/mm] (t)= [mm] \sum_{j=1}^m det[x_1(t),....,x_{j-1}, Ax_j, x_{j+1}, x_{j+1},....,x_m] [/mm] $ (*).

Nun sei [mm] X=X_\tau [/mm] eine eine Hauptfundamentalmatrix zum Zeitpunkt [mm] \tau\in [/mm] J, gilt somit [mm] x_j(t)=e_j [/mm] mit [mm] e^i_j=\delta_{ij}, [/mm] $1 [mm] \le [/mm] i, j [mm] \le [/mm] m$, dann bekommen wir aus obiger Gleichung (*) mit  [mm] $W_\tau [/mm] := [mm] \det X_\tau [/mm] $,
(da [mm] $Ae_j=$ [/mm] j-te Saplte von A und [mm] $W_(\tau) [/mm] =1$)

[mm] $\dot W_\tau (\tau) [/mm] = spur [mm] (A(\tau)) [/mm] = spur [mm] (A(\tau)) W_\tau (\tau)$ [/mm] (**)

Ist X eine beliebige Lösungsmatrix, so gilt mit einem geeigneten $C [mm] \in \mathbb [/mm] M ^m(K) $, dass $ X(t) = [mm] X_\tau [/mm] (t) C$ für alle $t [mm] \in [/mm] J $.
Damit und  (**) bekommen wir  [mm] $\dot W(\tau) [/mm] = [mm] W_\tau (\tau) \det [/mm] C = spur [mm] (A(\tau)) W_\tau (\tau) [/mm] det C = spur [mm] (A(\tau)) W_\tau (\tau) \det [/mm] C = spur [mm] A(\tau [/mm] ) [mm] W(\tau)$. [/mm]

Diese Gleichung gilt für alle [mm] $\tau \in [/mm] J $ und damit ist gezeigt, dass W unsere DGL löst.  Jetzt sollte man noch verifizieren, dass $W(t) [mm] =W(\tau) \exp(\int_\tau [/mm] ^t spur (A(s))ds$ für alle [mm] $t,\tau \in [/mm] J$ auch tatsächlich Lösung von unserer DGL ist....

Ich hoffe, es wird nun klar, warum die Lösung identisch oder nirgends verschwindet....

Greetz
Chris  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]