matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStochastikWürfelwurf
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Stochastik" - Würfelwurf
Würfelwurf < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Würfelwurf: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:39 Mi 28.02.2007
Autor: barney_gumbel2003

Aufgabe
Ein Würfel trägt auf vier seiner Flächen die zahl 2 und auf zwei die zahl 5.

Die Die Zufallsvariable X bezeichne die beim werfen erreichte augenzahl.
Berechnen sie den Erwartungswert, die Varianz und die Standardabweichung.

Hi,
Es soll eigentlich nur jmd das ergebnis kontrollieren bin nich mehr ganz so frisch in Stochastik.

k     P(x=k)     k*P(x=k)    k²*P(x=k)
2        2/3          4/3              8/3
5        1/3          5/3              25/3

                E(x)= 3
V(x)=11-3²=2
[mm] \delta =\wurzel{V(x)}=\wurzel{2} [/mm]

ist das so richtig?

Gruß barney


        
Bezug
Würfelwurf: Antwort
Status: (Antwort) fertig Status 
Datum: 20:25 Mi 28.02.2007
Autor: Zwerglein

Hi, Barney,

> Es soll eigentlich nur jmd das ergebnis kontrollieren bin
> nich mehr ganz so frisch in Stochastik.
>  
> k     P(x=k)     k*P(x=k)    k²*P(x=k)
> 2        2/3        4/3          8/3
> 5        1/3        5/3          25/3
>  
> E(x)= 3
>  V(x)=11-3²=2
>  [mm]\delta =\wurzel{V(x)}=\wurzel{2}[/mm]
>  
> ist das so richtig?

[ok]

mfG!
Zwerglein

Bezug
                
Bezug
Würfelwurf: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:43 Mi 28.02.2007
Autor: barney_gumbel2003

Aufgabe
es wird so lange geworfen bis die augensumme 8 beträgt
Stellen sie dieses experiment mit angabe aller wahrscheinlichkeiten in einem baumdiagramm dar. notieren sie dabei auch die ander jeweiligen stelle erreichte augensumme.

Z zähle die anzahl der benötigten versuche. bestimmen sie die wahrscheinlichkeitsfunktion von z und die durchschnittliche anzahl der versuche.

Erst mal danke für die antwort gerade.

Also der Baum ist kein Problem
Aber im 2ten Teil weis ich nicht wirklich was ich machen muss.

MfG
barney

Bezug
                        
Bezug
Würfelwurf: Antwort
Status: (Antwort) fertig Status 
Datum: 17:07 Do 01.03.2007
Autor: Zwerglein

Hi, Barney,

> es wird so lange geworfen bis die augensumme 8 beträgt

Ich vermute, die Augensumme soll MINDESTENS 8 betragen, stimmt's?

>  Stellen sie dieses experiment mit angabe aller
> wahrscheinlichkeiten in einem baumdiagramm dar. notieren
> sie dabei auch die an der jeweiligen stelle erreichte
> augensumme.
>  
> Z zähle die anzahl der benötigten versuche. bestimmen sie
> die wahrscheinlichkeitsfunktion von z und die
> durchschnittliche anzahl der versuche.
>  Erst mal danke für die antwort gerade.
>  
> Also der Baum ist kein Problem
>  Aber im 2ten Teil weis ich nicht wirklich was ich machen
> muss.

Nun, die Anzahl z der benötigten Versuchen beträgt: 2, 3 oder 4.

2 beträgt sie, wenn man zweimal nacheinander die 5 würfelt,
und 4, wenn man dreimal die 2 und anschließend "egal was" würfelt;
in allen anderen Fällen beträgt die Wurfzahl 3.

Daher: P(Z=2) = [mm] \bruch{1}{3}*\bruch{1}{3} [/mm] = [mm] \bruch{1}{9} [/mm]

P(Z=4) = [mm] \bruch{2}{3}*\bruch{2}{3}*\bruch{2}{3}*1 [/mm] = [mm] \bruch{8}{27} [/mm]

P(Z=3) = 1 - [mm] (\bruch{1}{9}+\bruch{8}{27}) [/mm] = [mm] \bruch{15}{27} [/mm] =  [mm] \bruch{5}{9} [/mm]

Kommst Du nun alleine weiter?

mfG!
Zwerglein

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]