matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Komplexe ZahlenWurzeln komplexer Zahlen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis-Komplexe Zahlen" - Wurzeln komplexer Zahlen
Wurzeln komplexer Zahlen < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wurzeln komplexer Zahlen: Komplexe Zahl im Nenner
Status: (Frage) beantwortet Status 
Datum: 21:33 Di 18.01.2011
Autor: sh4nks

Aufgabe
[mm] \bruch{1}{\wurzel{i^3}} [/mm]

Die Lösungen sollen in der Form a + bi angegeben werden. Mit Polarkoordinaten- Formel:
r^(-1/3) x [mm] e^{i((0,5\pi + 2\pik)/n) Jetzt meine Frage: den Radius potenziere ich mit -1/3, oder? Und ist mein n, das ich verwende, plus 3? Vielen Dank! # Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt. Ich bin Erstposter und bestätige, diese Frage in keinem anderem Forum gestellt zu haben. }[/mm]

        
Bezug
Wurzeln komplexer Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:45 Di 18.01.2011
Autor: schachuzipus

Hallo sh4nks,


> [mm]\bruch{1}{\wurzel{i^3}}[/mm]
>  Die Lösungen sollen in der Form a + bi angegeben werden.
> Mit Polarkoordinaten- Formel:
> r^(-1/3) x [mm]e^{i((0,5\pi + 2\pik)/n) Jetzt meine Frage: den Radius potenziere ich mit -1/3, oder? Und ist mein n, das ich verwende, plus 3? Vielen Dank! # Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt. Ich bin Erstposter und bestätige, diese Frage in keinem anderem Forum gestellt zu haben.}[/mm]
>  

Nun, überlege doch zuerst mal, wie du den Nenner in die Form [mm]x+yi[/mm] bekommst.

Dann kannst du mit seinem komplex Konjugierten erweitern, damit also den Nenner reell machen (bedenke [mm]z\cdot{}\overline{z}\in\IR[/mm]) und die gesuchte Darstellung bestimmen.

Zunächst ist [mm]i^3=-i[/mm]

Nun gilt es [mm]\sqrt{-i}[/mm] zu bestimmen.

Bedenke weiter [mm]-i=e^{\frac{3}{2}\pi\cdot{}i}[/mm] ...

Klappt's damit?

Gruß

schachuzipus



Bezug
        
Bezug
Wurzeln komplexer Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:16 Di 18.01.2011
Autor: sh4nks

Aufgabe
$ [mm] \bruch{1}{{i^(1/3)}} [/mm] $

Habe mich vorhin vertippt. Habe mit -i^(1/3) erweitert, Betrag ist 1 und Winkel Phi 0,5pi, oder?

Bezug
                
Bezug
Wurzeln komplexer Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:21 Di 18.01.2011
Autor: fencheltee


> [mm]\bruch{1}{{i^(1/3)}}[/mm]
>  Habe mich vorhin vertippt. Habe mit -i^(1/3) erweitert,
> Betrag ist 1 und Winkel Phi 0,5pi, oder?  

der betrag ist ja klar..
für den winkel hab ich was anderes heraus
was hast du berechnet

gruß tee

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]