matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Wurzelpotenzen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Mathe Klassen 8-10" - Wurzelpotenzen
Wurzelpotenzen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wurzelpotenzen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:10 Do 13.08.2009
Autor: Ice-Man

Nur mal eine Frage.

Das,

[mm] (-\bruch{1}{a^{-4}})^{-5} [/mm] ist doch gleich [mm] (\bruch{-1}{-a^{-4}})^{-5} [/mm]

und das = [mm] \bruch{1}{(\bruch{-1}{-a^{-4}})^{5}} [/mm]

und das = [mm] \bruch{1}{\bruch{-1^{5}}{-a^{20}}} [/mm]

stimmt das so, wie ich das hier gepostet habe?

Vielen Dank.

und das = [mm] 1*\bruch{-1^{-5}}{-a^{20}} [/mm]

und das = [mm] \bruch{1}{-a^{-20}} [/mm]

        
Bezug
Wurzelpotenzen: Antwort
Status: (Antwort) fertig Status 
Datum: 01:21 Do 13.08.2009
Autor: qsxqsx

nein ...

- [mm] \bruch{1}{x} \not= \bruch{-1}{-x} [/mm]

[mm] \bruch{-1}{-1} [/mm] = 1 , das minus kürzt sich weg...ist also nicht das gleiche.

und [mm] (a^{-4})^{5} [/mm] = [mm] a^{-4 * 5} [/mm] = [mm] a^{-20} [/mm]




Bezug
                
Bezug
Wurzelpotenzen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:43 Do 13.08.2009
Autor: Ice-Man

Sorry, habe das jetzt erst gesehen,
ich bin da ziehmlich in der Zeile verrutscht.

[mm] (\bruch{-1}{-a^{-4}})^{-5} [/mm]

das ist ja = [mm] \bruch{-1^{-5}}{-a^{20}} [/mm]

nur ich verstehe nicht ganz (bzw. habe nicht ganz verstanden) wie ich dann auf das Endergebnis, [mm] \bruch{1}{-a^{20}} [/mm] komme.

Bezug
                        
Bezug
Wurzelpotenzen: Antwort
Status: (Antwort) fertig Status 
Datum: 03:24 Do 13.08.2009
Autor: Fulla

Hallo Ice-Man,

> nur ich verstehe nicht ganz (bzw. habe nicht ganz
> verstanden) wie ich dann auf das Endergebnis,
> [mm]\bruch{1}{-a^{20}}[/mm] komme.

... das stimmt aber nicht, denn [mm] $(-1)^{-5}=-1$ [/mm]
Wenn du [mm] $\left(-\frac{1}{a^{-4}}\right)^{-5}$ [/mm] vereinfachen willst, ziehe das Minuszeichen entweder in den Zähler oder in den Nenner. Z.B.: [mm] $\ldots =\left(\frac{-1}{a^{-4}}\right)^{-5}=\frac{(-1)^{-5}}{(a^{-4})^{-5}}=\frac{-1}{a^{20}}=-\frac{1}{a^{20}}$ [/mm]


Lieben Gruß,
Fulla

Bezug
                                
Bezug
Wurzelpotenzen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:48 Do 13.08.2009
Autor: Ice-Man

Also kann ich nicht einfach sagen,

[mm] (-\bruch{1}{a^{-4}})^{-5} [/mm] = [mm] (\bruch{-1}{-a^{-4}})^{-5} [/mm]

das wäre nicht korrekt, oder?

Bezug
                                        
Bezug
Wurzelpotenzen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:50 Do 13.08.2009
Autor: Herby

Hallo,

> Also kann ich nicht einfach sagen,
>  
> [mm](-\bruch{1}{a^{-4}})^{-5}[/mm] = [mm](\bruch{-1}{-a^{-4}})^{-5}[/mm]
>  
> das wäre nicht korrekt, oder?

nein:

[mm] \left(-\bruch{1}{a^{-4}}\right)^{-5}=\left(\bruch{\red{-}1}{a^{-4}}\right)^{-5}=\left(\bruch{1}{\red{-}a^{-4}}\right)^{-5} [/mm]


Lg
Herby

Bezug
                                                
Bezug
Wurzelpotenzen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:53 Do 13.08.2009
Autor: Ice-Man

Also das Minus nur im Zähler oder Nenner.?

Bezug
                                                        
Bezug
Wurzelpotenzen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:55 Do 13.08.2009
Autor: Herby

Hi,

> Also das Minus nur im Zähler oder Nenner.?

jawoll [hut]


Lg
Herby

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]