matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesZeigen, dass Gruppe bildet...
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra Sonstiges" - Zeigen, dass Gruppe bildet...
Zeigen, dass Gruppe bildet... < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zeigen, dass Gruppe bildet...: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 21:05 Do 19.04.2007
Autor: Jennymaus

Aufgabe
Es sei M eine Menge und P(M) die Menge aller Teilmengen von M. Man zeige, dass P(M) mit der symmetrischen Differenz [mm] \Delta, [/mm] A [mm] \Delta [/mm] B := (A \ B) ∪ (B \ A) eine Gruppe bildet.

Hi!
Kann mir vielleicht jemand bei dieser Aufgabe helfen?
Ich weiß, dass eine Gruppe aus einer nichtleeren Menge und einer Abbildung besteht mit den Eigenschaften Assoziativität, Existenz eines neutralen Elements und eines inversen Elements.
Diese Eigenschaften müsste ich ja nun nachweisen. Aber wie mache ich das? Ich habe leider gar keine Ahnung, wie ich da rangehen soll.
Wäre echt supi, wenn mir jemand helfen könnte.
Danke!
Lg, Jenny

        
Bezug
Zeigen, dass Gruppe bildet...: Tipp
Status: (Antwort) fertig Status 
Datum: 00:22 Fr 20.04.2007
Autor: unknown

Hallo,


> Es sei M eine Menge und P(M) die Menge aller Teilmengen von
> M. Man zeige, dass P(M) mit der symmetrischen Differenz
> [mm]\Delta[/mm], [mm]A\Delta B := (A \setminus B) \cup (B \setminus A)[/mm] eine Gruppe
> bildet.
>  Hi!
>  Kann mir vielleicht jemand bei dieser Aufgabe helfen?
>  Ich weiß, dass eine Gruppe aus einer nichtleeren Menge und
> einer Abbildung besteht mit den Eigenschaften
> Assoziativität, Existenz eines neutralen Elements und eines
> inversen Elements.
> Diese Eigenschaften müsste ich ja nun nachweisen. Aber wie
> mache ich das? Ich habe leider gar keine Ahnung, wie ich da
> rangehen soll.

Naja, am besten der Reihe nach.

(1) $P(M)$ ist nicht leer, denn es gilt immer [mm] $\emptyset \in [/mm] P(M)$, egal, wie $M$ aussieht.

(2) Für die Assoziativität musst Du folgendes zeigen: Seien $A,B,C [mm] \in [/mm] P(M)$ (d.h. $A,B,C [mm] \subseteq [/mm] M$). Dann muss man nachrechnen, dass gilt $A [mm] \Delta [/mm] (B [mm] \Delta [/mm] C) = (A [mm] \Delta [/mm] B) [mm] \Delta [/mm] C$. Also, Du musst zeigen, dass
  
     [mm] $\displaystyle\left(\,A \setminus \Bigl((B \setminus C) \cup (C \setminus B)\Bigr)\,\right) \cup \left(\,\Bigl((B \setminus C) \cup (C \setminus B)\Bigr) \setminus A\,\right) [/mm] = [mm] \left(\,\Bigl((A \setminus B) \cup (B \setminus A)\Bigr) \setminus C\,\right) \cup \left(\,C \setminus \Bigl((A \setminus B) \cup (B \setminus A)\Bigr)\right)$ [/mm]

gilt. Das ist zugegebenermaßen eine blöde Rechnerei. Du kannst versuchen, die beiden Seiten mittels Rechenregeln für Mengen etwas zu vereinfachen. Oder Du benutzt die Definition der Mengenoperationen. Dann kommst Du auf logische Formeln, deren Gleichheit Du zeigen musst. (Das geht eventuell mittels Wahrheitstabellen).

(3) Das neutrale Element ist wieder einfacher. Tipp: Es muss ein Element sein, dass wirklich in jeder Potenzmenge zu finden ist, egal, wie $M$ aussieht.

(4) Wenn Du ein neutrales Element hast, kannst Du anfangen, Inverse zu suchen. Tipp: Überleg vielleicht als erstes, was das neutrale Element von $M$ ist.


Hoffe, das hilft Dir.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]