matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenZeigen f löst AWP
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Gewöhnliche Differentialgleichungen" - Zeigen f löst AWP
Zeigen f löst AWP < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zeigen f löst AWP: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:28 Mo 24.06.2013
Autor: Gnocchi

Aufgabe
Es werde das AWP y'=A(t)*y, [mm] y(0)=(\lambda,0)^T [/mm] betrachtet, wobei:
[mm] A(t)=\pmat{ -1+\bruch{3}{2} cos^2(t) & 1-\bruch{3}{2}cos(t)sin(t) \\ -1-\bruch{3}{2} cos(t)sin(t) & -1+\bruch{3}{2}sin^2(t) } [/mm]
(a)Bestimmen sie die Eigenwerte der Matrix
(b)Zeigen Sie, dass die folgende Funktion eine Lösung des Anfangswertproblems ist. y(t)= [mm] \lambda \vektor{-cos(t) \\ sin(t)} e^{t/2} [/mm]
(c)Wie verhält sich die Lösung aus Aufgabenteil (b) für t [mm] \to \infty [/mm]

(a) habe ich bereits gelöst und die Eigenwerte:
[mm] \lambda_1 [/mm] = [mm] \bruch{1}{4}(-1+i\wurzel{7}) [/mm]
[mm] \lambda_2 [/mm] = [mm] \bruch{1}{4}(-1-i\wurzel{7}) [/mm]
Bei (b) liegt jetzt mein Problem:
Was muss ich nun genau ziegen? Reicht es wenn ich den Anfangswert überprüfe für y'=A(t)*y oder muss ich komplett allgemein zeigen, dass die Gleichung gilt?
Zweiteres hab ich versucht und habe auf der rechten Seite. irgendwelche ekligen Terme mit sin und cos raus, die sich auch nicht mehr vereinfachen lassen
(c) Für t [mm] \to \infty [/mm] geht [mm] e^{t/2} [/mm] gegen undendlich und die Vektor Einträge bewegen sich aufgrund von sin und cos immer im geschlossenen Intervall -1 und 1. Deshalb wird die Lösung im undendlich nicht unendlich?! Beeinflusst das [mm] \lambda [/mm] das Verhalten im unendlichen? So, dass die Lösung unendlich werden kann wenn [mm] \lambda [/mm] groß genug ist?

        
Bezug
Zeigen f löst AWP: Antwort
Status: (Antwort) fertig Status 
Datum: 23:18 Mo 24.06.2013
Autor: steppenhahn

Hallo,

> Es werde das AWP y'=A(t)*y, [mm]y(0)=(\lambda,0)^T[/mm] betrachtet,
> wobei:
>  [mm]A(t)=\pmat{ -1+\bruch{3}{2} cos^2(t) & 1-\bruch{3}{2}cos(t)sin(t) \\ -1-\bruch{3}{2} cos(t)sin(t) & -1+\bruch{3}{2}sin^2(t) }[/mm]
>  
> (a)Bestimmen sie die Eigenwerte der Matrix
>  (b)Zeigen Sie, dass die folgende Funktion eine Lösung des
> Anfangswertproblems ist. y(t)= [mm]\lambda \vektor{-cos(t) \\ sin(t)} e^{t/2}[/mm]
>  
> (c)Wie verhält sich die Lösung aus Aufgabenteil (b) für
> t [mm]\to \infty[/mm]
>  (a) habe ich bereits gelöst und die
> Eigenwerte:
>  [mm]\lambda_1[/mm] = [mm]\bruch{1}{4}(-1+i\wurzel{7})[/mm]
>  [mm]\lambda_2[/mm] = [mm]\bruch{1}{4}(-1-i\wurzel{7})[/mm]

OK, die sind richtig.
Bemerkenswert ist aber, dass die Eigenwerte gar nicht von t abhängen.


>  Bei (b) liegt jetzt mein Problem:
>  Was muss ich nun genau ziegen? Reicht es wenn ich den
> Anfangswert überprüfe für y'=A(t)*y oder muss ich
> komplett allgemein zeigen, dass die Gleichung gilt?

Du musst komplett zeigen, dass $y'(t) = A(t)*y(t)$ für alle $t$ gilt.
Du kannst ja mal hier hinschreiben, wie weit du gekommen bist.

Evtl. habt ihr aber auch in der Vorlesung irgendwelche Sätze gehabt, womit man jetzt die DGL lösen kann, wenn man die Eigenwerte von $A(t)$ kennt?


>  (c) Für t [mm]\to \infty[/mm] geht [mm]e^{t/2}[/mm] gegen undendlich und
> die Vektor Einträge bewegen sich aufgrund von sin und cos
> immer im geschlossenen Intervall -1 und 1. Deshalb wird die
> Lösung im undendlich nicht unendlich?!

Zweierlei Dinge sind festzuhalten:

Die Lösung entspricht einer Art "Schraubenlinie".
Siehe dazu den "Parametric Plot" (ganz unten) hier: []Wolframalpha.

Und diese geht zwar nicht "geordnet" gegen unendlich, aber der Betrag der Lösung, also

||y(t)|| = [mm] |\lambda| \cdot e^{t/2} [/mm]

geht durchaus gegen Unendlich!


> Beeinflusst das
> [mm]\lambda[/mm] das Verhalten im unendlichen? So, dass die Lösung
> unendlich werden kann wenn [mm]\lambda[/mm] groß genug ist?

Nein, das [mm] $\lambda$ [/mm] beeinflusst das Verhalten der Lösung für $t [mm] \to \infty$ [/mm] gar nicht. Es ist nur ein Skalierungsfaktor (die Lösung geht höchstens "schneller" oder "langsamer" gegen Unendlich).

Ein Spezialfall ist aber [mm] $\lambda [/mm] = 0$.


Viele Grüße,
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]