matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenZeigen, ob Reihe konvergiert!
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - Zeigen, ob Reihe konvergiert!
Zeigen, ob Reihe konvergiert! < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zeigen, ob Reihe konvergiert!: Aufgabe
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 15:25 Sa 25.10.2008
Autor: yildi

Aufgabe
[mm] \summe_{k=1}^{\infty} \bruch{1}{{4k \choose 3k}} [/mm]

Hallo!

Ich steh leider mal wieder vor einem Problem :( Ich soll an der oben stehenden Reihe zeigen, dass sie entweder konvergiert oder eben divergiert. Das " 1 durch n über k" habe ich erstmal umgeformt zu:

[mm] \bruch{(3k)! * k!}{(4k)!} [/mm]

Als notwendige Bedingung für die Konvergenz hatten wir im Unterricht, dass der Limes der Folge gleich Null sein muss:

[mm] \limes_{k\rightarrow\infty} \bruch{(3k)! * k!}{(4k)!} = 0 [/mm]

Da das stimmt, weiss ich nun aber nur dass eine Konvergenz nicht ausgeschlossen ist. Ich denke, dass die anderen besprochenen Konvergenzkriterien (Leibnizsches, Majorantenkriterium und Minorantenkriterium) mir hier nicht weiterhelfen. Nur das Quotientenkriterium schätze ich. Liege ich da richtig? Falls ja, habe ich nämlich das Problem, dass ich den großen entstehenden Doppelbruch irgendwie nicht lösen kann bzw. davon den Grenzwert bilden kann. (Sogar mein TI Voyage 200 ist damit überfordert ;-) )

Wäre wirklich super, wenn mir jemand helfen könnte :-) Vielen Dank!


        
Bezug
Zeigen, ob Reihe konvergiert!: Tipp
Status: (Antwort) fertig Status 
Datum: 16:05 Sa 25.10.2008
Autor: barsch

Hi,

ich würde es einmal mit dem Quotientenkriterium versuchen...

Hättest deinen Doppelbruch posten sollen. ;-) Ich kann dir mal mein mögliches Vorgehen kurz skizzieren.

[mm] \summe_{k=1}^{\infty} \bruch{1}{{4k \choose 3k}}=\summe_{k=1}^{\infty} \bruch{(3k)! \cdot{} k!}{(4k)!} [/mm]

[mm] \left|\frac{a_{k+1}}{a_k}\right|= \left|\frac{ \bruch{(3(k+1))! \cdot{} (k+1)!}{(4(k+1)!}}{ \bruch{(3k)! \cdot{} k!}{(4k)!}}\right|=\left| \bruch{(3(k+1))! \cdot{} (k+1)!*(4k)!}{(4(k+1))!*(3k)! \cdot{} k!}\right|=\left| \bruch{(3k+3)! \cdot{} \red{k!}*(k+1)*(4k)!}{(4k+4)!*(3k)! \cdot{} \red{k!}}\right|=\left| \bruch{(3k+3)! \cdot{} (k+1)*(4k)!}{(4k+4)!*(3k)!}\right| [/mm]


[mm] =\left| \bruch{\red{(3k)!}*(3k+1)*(3k+2)*(3k+3) \cdot{} (k+1)*\red{(4k)!}}{\red{(4k)!}*(4k+1)*(4k+2)*(4k+3)*(4k+4)*\red{(3k)!}}\right| [/mm]


[mm] =\left| \bruch{(3k+1)*(3k+2)*(3k+3) \cdot{} (k+1)}{(4k+1)*(4k+2)*(4k+3)*(4k+4)}\right| [/mm]

Jetzt versuche doch einmal im Zähler 3k und im Nenner 4k auszuklammern.

MfG barsch

Bezug
                
Bezug
Zeigen, ob Reihe konvergiert!: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:40 So 26.10.2008
Autor: yildi

Cool danke, habs hinbekommen! :-)

So geht es dann weiter:

[mm] = \bruch{(3k) \cdot{} \bruch{4}{3} \cdot{} 2 \cdot{} 3 \cdot{} 4}{(4k) \cdot{} 2 \cdot{} 3 \cdot{} 4 \cdot{} 5} [/mm]

[mm] = \bruch{4k}{20k} [/mm]

[mm] = \bruch{1}{5} [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]