matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-InduktionZeigen oder Widerlegen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis-Induktion" - Zeigen oder Widerlegen
Zeigen oder Widerlegen < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zeigen oder Widerlegen: Korrektur
Status: (Frage) beantwortet Status 
Datum: 12:44 Do 11.11.2010
Autor: freak333

Aufgabe
Zeigen Sie oder widerlegen Sie:

a) [mm] \exists [/mm] C [mm] \in\IN(inkl [/mm] 0), so dass gilt:

    [mm] \forall [/mm] n [mm] \in\IN(inkl [/mm] 0): [mm] \summe_{k=1}^{n}k² [/mm] = [mm] \bruch{1}{6}n(n+1)(2n+1)+C [/mm]

b) [mm] \exists [/mm] n [mm] \in\IN(inkl [/mm] 0): [mm] \summe_{k=1}^{n}k [/mm] = [mm] \bruch{1}{8}(2n+1)². [/mm]

sooo... also nun frage ich mich, ob meine Lösung richtig ist... bin mir da nämlich nicht so sicher...

zu a)
I.A.: n = 2

[mm] \summe_{k=1}^{2}k² [/mm] = 1² = 1 = [mm] \bruch{1}{6}*1(2+1)(2*2+1)+C [/mm] = 2+C

daraus folgt:
1 = 2+C |-2
-1 = C
daraus ergibt sich ein Widerspruch, da -1 [mm] \not\in \IN(inkl. [/mm] 0)

ist das richtig?

b)
1 = [mm] \bruch{1}{8}(2n+1)² [/mm] |*8
8 = (2n+1)²  | [mm] \wurzel{} [/mm]
[mm] \wurzel{8} [/mm] = 2n+1 |-1 |:2
n = [mm] \bruch{(\wurzel{3} - \wurzel{1})}{2} [/mm]

hab ich damit bewiesen, dass es ein n gibt? Und wenn ja, wie beweis ich jetzt, dass es element [mm] \IN(inkl.0) [/mm] ist??

Danke schonmal im Vorraus!

        
Bezug
Zeigen oder Widerlegen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:58 Do 11.11.2010
Autor: leduart

Hallo

> Zeigen Sie oder widerlegen Sie:
>  
> a) [mm]\exists[/mm] C [mm]\in\IN(inkl[/mm] 0), so dass gilt:
>  
> [mm]\forall[/mm] n [mm]\in\IN(inkl[/mm] 0): [mm]\summe_{k=1}^{n}k²[/mm] =
> [mm]\bruch{1}{6}n(n+1)(2n+1)+C[/mm]
>  
> b) [mm]\exists[/mm] n [mm]\in\IN(inkl[/mm] 0): [mm]\summe_{k=1}^{n}k[/mm] =
> [mm]\bruch{1}{8}(2n+1)².[/mm]
>  sooo... also nun frage ich mich, ob meine Lösung richtig
> ist... bin mir da nämlich nicht so sicher...
>  
> zu a)
>  I.A.: n = 2
>  
> [mm]\summe_{k=1}^{2}k²[/mm] = 1² = 1 =
> [mm]\bruch{1}{6}*1(2+1)(2*2+1)+C[/mm] = 2+C

Da hast du einfach Mist gerechnet!
n=2 wieviel Summanden hast du?
und setz hinten wirklich überall 2=2 ein

> daraus folgt:
> 1 = 2+C |-2
>  -1 = C
>  daraus ergibt sich ein Widerspruch, da -1 [mm]\not\in \IN(inkl.[/mm]

neu rechnen!

> 0)
>  
> ist das richtig?

Nein

> b)
>  1 = [mm]\bruch{1}{8}(2n+1)²[/mm] |*8

hier hast du links offensichtlich n=1 eingesetzt, rechts nicht
du hast also höchstens gezeigt, dass die Gl. für n=1 nicht gilt

>  8 = (2n+1)²  | [mm]\wurzel{}[/mm]
>  [mm]\wurzel{8}[/mm] = 2n+1 |-1 |:2
>  n = [mm]\bruch{(\wurzel{3} - \wurzel{1})}{2}[/mm]
>  
> hab ich damit bewiesen, dass es ein n gibt? Und wenn ja,
> wie beweis ich jetzt, dass es element [mm]\IN(inkl.0)[/mm] ist??

Nein
Gruss leduart


Bezug
        
Bezug
Zeigen oder Widerlegen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:03 Do 11.11.2010
Autor: fred97

Tipps:

a) gilt für C=0. Beweise das mit Induktion

Zu b):

$ [mm] \summe_{k=1}^{n}k [/mm] $  ist eine natürlichen Zahl, nenne wir sie m.

Wenn b) richtig wäre, so würde es ein n [mm] \in \IN [/mm] geben mit:   8m=2n+1. Geht das ?

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]