matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieZerlegung der Eins
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integrationstheorie" - Zerlegung der Eins
Zerlegung der Eins < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zerlegung der Eins: Verständnisproblem
Status: (Frage) beantwortet Status 
Datum: 19:41 Mi 26.11.2014
Autor: Rocky14

Aufgabe
Konstruieren Sie eine Zerlegung der Eins auf [mm] \IR [/mm] mit den folgenden Eigenschaften:
i) Die Funktionen [mm] f_{i} \in C_{c}(\IR), [/mm] i [mm] \in \IZ, [/mm] sind beliebig oft differenzierbar
ii) 0 [mm] \le f_{i} \le [/mm] 1
iii) [mm] Träger(f_{i}) \subset [/mm] (-3/2-i, 3/2-i)
iv) [mm] \summe_{i \in \IZ} f_{i}(x) [/mm] = 1 für alle x [mm] \in \IR. [/mm]

Hallo Leute,
ihr seht oben meine Aufgabe.
Ich kann mir unter einer Zerlegung der Eins relativ wenig vorstellen. Ich habe jetzt auf Wikipedia ein Beispiel gefunden:
http://de.wikipedia.org/wiki/Zerlegung_der_Eins
Allerdings blicke ich da schon nicht durch.
Für mich fällt die Definition von [mm] f_{i} [/mm] vom Himmel, sodass ich dem Rest dann auch nicht mehr wirklich folgen kann.
Mittlerweile gaube ich sogar, dass dieses Beispiel irgendwie  mit meiner Aufgabe zu tun hat. Das Intervall am Ende sieht so ähnlich aus.

Kann mir hier vielleicht jemand helfen?

Ich habe diese Frage in keinem anderen Forum auf einer anderen Internetseite gestellt.

        
Bezug
Zerlegung der Eins: Antwort
Status: (Antwort) fertig Status 
Datum: 15:03 Do 27.11.2014
Autor: hanspeter.schmid

Hallo!

diese Funktion fällt vom Himmel weil man IRGEND einen Satz von Funktionen wählen kann. Du kannst der Phantasie freien Lauf lassen.

Z.B. ist [mm] $f_i=\frac{1}{2^i}$, [/mm] also alle sind Konstant, eine (wenn auch sehr langweilige) Zerlegung von eins, die Deine Bedingungen erfüllt.

Hilft das?


Bezug
                
Bezug
Zerlegung der Eins: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:03 So 30.11.2014
Autor: Rocky14

Ja, danke. Das hat mir wirklich sehr geholfen - konnte die Aufgabe lösen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]