matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungZerlegungssumme von (0,5x²+1)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integralrechnung" - Zerlegungssumme von (0,5x²+1)
Zerlegungssumme von (0,5x²+1) < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zerlegungssumme von (0,5x²+1): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:29 Di 08.08.2006
Autor: Spyro

Aufgabe
Bestimmen Sie  [mm] \integral_{0}^{2}{(0,5x²+1) dx} [/mm]

Die Aufgabe soll mit Ober- oder Untersumme gelöst werden, wobei mir Obersumme gerade lieber wäre :)

Meine bisherige Vorgehensweise:
dx =  [mm] \bruch{b-a}{n} [/mm] =  [mm] \bruch{2-0}{n} [/mm] =  [mm] \bruch{2}{n} [/mm]

[mm] O_{n}=f(x_{1})\*dx [/mm] + [mm] f(x_{2})\*dx [/mm] + [mm] f(x_{3})\*dx [/mm] + ... + [mm] f(x_{n})\*dx [/mm]

[mm] O_{n}=dx[f(x_{1}) [/mm] + [mm] f(x_{2}) [/mm] + [mm] f(x_{3}) [/mm] + ... + [mm] f(x_{n})] [/mm]

[mm] O_{n}= \bruch{2}{n}[f(x_{1}) [/mm] + [mm] f(x_{2}) [/mm] + [mm] f(x_{3}) [/mm] + ... + [mm] f(x_{n})] [/mm]

für [mm] x_{1} [/mm] = [mm] 1\*\bruch{2}{n} [/mm] , [mm] x_{2} [/mm] = [mm] 2\*\bruch{2}{n} [/mm] , ... , [mm] x_{n} [/mm] = [mm] n\*\bruch{2}{n} [/mm] ergibt sich

[mm] O_{n}= \bruch{2}{n}[ (0,5(1\*\bruch{2}{n})^2+1)+(0,5(2\*\bruch{2}{n})^2+1)+(0,5(3\*\bruch{2}{n})^2+1)+...+(0,5(n\*\bruch{2}{n})^2+1)] [/mm]

und ab jetzt komm ich auf keinen grünen Zweig mehr.
Ausklammern bringt mir komische Terme á la [mm] 0,5\*((\bruch{2}{n})^2\*(1)^2+\bruch{2}{(\bruch{2}{n})^2}) [/mm]

Kann mir jemand weiterhelfen?

Gruss,
Spyro

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Zerlegungssumme von (0,5x²+1): Antwort
Status: (Antwort) fertig Status 
Datum: 15:09 Di 08.08.2006
Autor: Docy

Hallo Spyro,
du kannst hier vorklammern:

[mm] \bruch{2}{n}(0.5(\bruch{2}{n})^{2})(n+(1^{2}+2^{2}+...+n^{2})) [/mm]

dann brauchst du nur noch die Formel:

[mm] 1^{2}+ 2^{2}+...+n^{2} [/mm] = [mm] \bruch{n}{6}(n+1)(2n+1) [/mm]

Die setzt du dann oben ein, vereinfachst noch ein bisschen und bildest dann den limes.
Wenn noch was unklar sein sollte, frag ruhig nochmal nach.

Gruß
Docy

Bezug
                
Bezug
Zerlegungssumme von (0,5x²+1): Verständnisfrage
Status: (Frage) beantwortet Status 
Datum: 16:24 Di 08.08.2006
Autor: Spyro

Wenn ich deine Antwort richtig verstanden habe, dann schaust du welcher Term n-mal vorkommt, richtig?

Ich hab versucht deine Lösung nochmal in meine Denkstrukturen umzutextet und dabei ist folgendes rausgekommen:

[mm] O_{n}= \bruch{2}{n}[ (0,5(1*\bruch{2}{n})^2+1)+(0,5(2*\bruch{2}{n})^2+1)+(0,5(3*\bruch{2}{n})^2+1)+...+(0,5(n*\bruch{2}{n})^2+1)] [/mm]

entspricht:

[mm] O_{n}= \bruch{2}{n}[ (0,5*1^2*(\bruch{2}{n})^2+1)+(0,5*2^2*(\bruch{2}{n})^2+1)+(0,5*3^2*(\bruch{2}{n})^2+1)+...+(0,5*n^2*(\bruch{2}{n})^2+1)] [/mm]

hier kommt das [mm]+1[/mm] n-mal vor, also schreibe ich:

[mm] O_{n}= \bruch{2}{n}[ ((0,5*1^2*(\bruch{2}{n})^2)+(0,5*2^2*(\bruch{2}{n})^2)+(0,5*3^2*(\bruch{2}{n})^2)+...+(0,5*n^2*(\bruch{2}{n})^2))+n*1] [/mm]

die Abfolge von [mm](1^2+2^2+3^2+...+n^2)[/mm] kann ich rausziehen und habe dann dastehen:

[mm] O_{n}= \bruch{2}{n}[ (0,5*(\bruch{2}{n})^2)*(1^2+2^2+3^2+...+n^2)+n*1] [/mm]

Kannst du mir jetzt noch erklären, wie ich zu deiner Klammerschreibweise komme? Wenn ich nämlich nach Punkt-vor-Strich rechne mit meinem Ergebnis, dann kommt folgendes raus:
[mm] O_{n}=\bruch{4+6n+\bruch{6}{n}+\bruch{2}{n^3}}{3} [/mm]

nun ja... und davon der Limes für n gegen unendlich geht dann wohl ins nirgendwo ^^

Gruss,
Spyro

Bezug
                        
Bezug
Zerlegungssumme von (0,5x²+1): Hinweis
Status: (Antwort) fertig Status 
Datum: 21:20 Di 08.08.2006
Autor: informix

Hallo Spyro,
> Wenn ich deine Antwort richtig verstanden habe, dann
> schaust du welcher Term n-mal vorkommt, richtig?
>  
> Ich hab versucht deine Lösung nochmal in meine
> Denkstrukturen umzutextet und dabei ist folgendes
> rausgekommen:
>  
> [mm]O_{n}= \bruch{2}{n}[ (0,5(1*\bruch{2}{n})^2+1)+(0,5(2*\bruch{2}{n})^2+1)+(0,5(3*\bruch{2}{n})^2+1)+...+(0,5(n*\bruch{2}{n})^2+1)][/mm]
>  
> entspricht:
>  
> [mm]O_{n}= \bruch{2}{n}[ (0,5*1^2*(\bruch{2}{n})^2+1)+(0,5*2^2*(\bruch{2}{n})^2+1)+(0,5*3^2*(\bruch{2}{n})^2+1)+...+(0,5*n^2*(\bruch{2}{n})^2+1)][/mm]
>  
> hier kommt das [mm]+1[/mm] n-mal vor, also schreibe ich:
>  
> [mm]O_{n}=\bruch{2}{n}((0,5*1^2*(\bruch{2}{n})^2)+(0,5*2^2*(\bruch{2}{n})^2)+(0,5*3^2*(\bruch{2}{n})^2)+...+(0,5*n^2*(\bruch{2}{n})^2))+n*1][/mm]
>  
> die Abfolge von [mm](1^2+2^2+3^2+...+n^2)[/mm] kann ich rausziehen
> und habe dann dastehen:
>  
> [mm]O_{n}= \bruch{2}{n}[ (0,5*(\bruch{2}{n})^2)*(1^2+2^2+3^2+...+n^2)+n*1][/mm]

[ok]
Docy schrieb nun weiter: $ [mm] 1^{2}+ 2^{2}+...+n^{2} [/mm]  =  [mm] \bruch{n}{6}(n+1)(2n+1) [/mm] $
also setzt du den Bruch nur für die Riesensumme ein, nicht für das Ganze!

[mm]O_{n}= \bruch{2}{n} [(0,5*(\bruch{2}{n})^2)* \underbrace{(1^2+2^2+3^2+...+n^2)}_{\bruch{n}{6}(n+1)(2n+1)}+n*1][/mm]

Kommst du jetzt allein weiter?

Gruß informix


Bezug
                                
Bezug
Zerlegungssumme von (0,5x²+1): Rechenfehler...
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:58 Mi 09.08.2006
Autor: Spyro

So...

beim Lösen der Gleichung hatte sich bei mir ein Rechenfehler eingeschlichen... Kommando zurück, es stimmt alles!

noch als Ergänzung:

@informix
jup, das mit dem Einsetzen war mir klar :) Ich hatte (siehe oben) nur einen Rechenfehler nach dem Einsetzen und Auflösen.
Trotzdem danke dir für die Anmerkung!

... Ach ja und ich hab es jetzt gelöst bekommen :) *Freude*

schönen Abend noch!

Gruss,
Spyro

Bezug
                
Bezug
Zerlegungssumme von (0,5x²+1): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:16 Mi 09.08.2006
Autor: Docy

Oh sorry, hab mich da vertan. Erster Term sollte folgendermaßen lauten:

[mm] \bruch{2}{n}(0.5(\bruch{2}{n})^{2})(1^{2}+2^{2}+...+n^{2})+\bruch{2}{n}n [/mm]

Gruß
Docy

Bezug
                        
Bezug
Zerlegungssumme von (0,5x²+1): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:41 Mi 09.08.2006
Autor: informix


> Oh sorry, hab mich da vertan. Erster Term sollte
> folgendermaßen lauten:
>  

Das hatten wir vorher auch schon, wenn man die eckige Klammer nicht übersieht. ;-)
[mm]\bruch{2}{n}(0.5(\bruch{2}{n})^{2})\underbrace{(1^{2}+2^{2}+...+n^{2})}_{= \bruch{n}{6}(n+1)(2n+1) }+\bruch{2}{n}n[/mm]
jetzt siehst du genauer, wo du die Ersetzung vornehmen musst.

jetzt noch ein wenig kürzen und den Grenzwert $n [mm] \rightarrow \infty$ [/mm] bilden und - fertig.

Gruß informix.
  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]