matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTopologie und GeometrieZusammenhang Relativtopologie
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Topologie und Geometrie" - Zusammenhang Relativtopologie
Zusammenhang Relativtopologie < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zusammenhang Relativtopologie: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:18 Sa 15.05.2010
Autor: congo.hoango

Aufgabe
Betrachen Sie die Menge [mm] \{(x,y)\in \IR^2: x=0, y\in [-1,1]\}\cup\{(x,y):x\in (0,1), y=sin(1/x)\}. [/mm]

a) Skizzieren Sie M.
b) Zeigen Sie, dass M, versehen mit der Relativtopologie von [mm] \IR^2 [/mm] zusammenhängend ist.

Hallo,

die a) ist ja nicht weiter schwer. Sieht ja genauso aus wie f(x)=sin(1/x) nur halt, dass f(0) auch in M liegt.

Aber bei dem Beweis bei b) weiß ich nicht wirklich wie ich vorgehen soll.
Das habe ich bisher (habe mir eigentlich nur zusammengeschrieben was ich über Relativtopologie und Zusammenhang weiß...):

-------------

Sei [mm] \tau_{\IR^2}=\{O\cap \IR^2: O\in \tau\} [/mm] Relativtopologie des [mm] \IR^2. [/mm]
z.z.: (M, [mm] \tau_{\IR^2}) [/mm] ist zusammenhängend.
Beweis:

M heißt zusammenhängend, wenn es keine zwei offenen Teilmengen [mm] U,V\subseteq [/mm] M gibt, mit [mm] U,V\not= \emptyset, [/mm] sodass [mm] U\cup [/mm] V=M und [mm] U\cap [/mm] V [mm] =\emptyset. [/mm]

-------------

Ich habe es erstmal mit nem Widerspruchsbeweis probiert, bin aber nicht wirklich weit gekommen.
Kann man vlt. damit argumentieren, dass es keine offene Menge gibt die Teilmenge von M ist und die [mm] \{(x,y)\in \IR^2:x=0, y=[-1,1]\} [/mm] enthält? (Oder ist das Quatsch?)

Danke und Gruß
vom verzweifelten congo

        
Bezug
Zusammenhang Relativtopologie: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:16 So 16.05.2010
Autor: congo.hoango

Hat keiner einen Hinweis? Ich komme leider echt nicht alleine weiter :-(

Bezug
                
Bezug
Zusammenhang Relativtopologie: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 06:20 Mo 17.05.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Zusammenhang Relativtopologie: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Mo 17.05.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]