matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesZwischwertsatz/Satz von Rolle
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis-Sonstiges" - Zwischwertsatz/Satz von Rolle
Zwischwertsatz/Satz von Rolle < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zwischwertsatz/Satz von Rolle: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:12 Mi 11.04.2012
Autor: sissile

Aufgabe
Sei f(x) = $ [mm] e^x [/mm] $ sin(x). MAn zeige,

(b) mit Hilfe des Satzes von Rolle (angewendet auf f) und  (als Alternative) mit Hilfe des Zwischenwertsatzes (angewendet auf f'), dass es ein $ [mm] x_0 \in [/mm] $ (0, $ [mm] \pi/2) [/mm] $ gibt mit $ [mm] f'(x_0) [/mm] $ = 0

f'(x) = [mm] e^x [/mm] * sin(x) + [mm] e^x [/mm] * cos(x)

f(0)=0
[mm] f(\pi/2)=e^{\pi/2} [/mm]

f'(0)=1
[mm] f'(\pi/2) [/mm] = [mm] e^{\pi/2} [/mm]

Wenn ich den Satz von ROlle anwende muss aber f(a) mit f(b) übereinstimmen.
Eimne Funktion, die im offenen Intervall (a,b) differenzierbar und und im abgeschlossen Intervall stetig  ist und außerdem f(a) = f(b) erfüllt, hat an  mindestens einer Stelle [mm] x_0 [/mm] aus (a,b) die Ableitung Null-

Und beim Zwischenwertsatz muss doch f(a) < 0 und f(b)>0 oder umgekehrt sein um in anwenden zu können?


Wo ist mein Gedankenfehler?


        
Bezug
Zwischwertsatz/Satz von Rolle: Antwort
Status: (Antwort) fertig Status 
Datum: 01:53 Mi 11.04.2012
Autor: Marcel

Hallo,

> Sei f(x) = [mm]e^x[/mm] sin(x). MAn zeige,
>  
> (b) mit Hilfe des Satzes von Rolle (angewendet auf f) und  
> (als Alternative) mit Hilfe des Zwischenwertsatzes
> (angewendet auf f'), dass es ein [mm]x_0 \in[/mm] (0, [mm]\pi/2)[/mm] gibt
> mit [mm]f'(x_0)[/mm] = 0
>  f'(x) = [mm]e^x[/mm] * sin(x) + [mm]e^x[/mm] * cos(x)
>  
> f(0)=0
>  [mm]f(\pi/2)=e^{\pi/2}[/mm]
>  
> f'(0)=1
>  [mm]f'(\pi/2)[/mm] = [mm]e^{\pi/2}[/mm]
>  
> Wenn ich den Satz von ROlle anwende muss aber f(a) mit f(b)
> übereinstimmen.
>  Eimne Funktion, die im offenen Intervall (a,b)
> differenzierbar und und im abgeschlossen Intervall stetig  
> ist und außerdem f(a) = f(b) erfüllt, hat an  mindestens
> einer Stelle [mm]x_0[/mm] aus (a,b) die Ableitung Null-
>  
> Und beim Zwischenwertsatz muss doch f(a) < 0 und f(b)>0
> oder umgekehrt sein um in anwenden zu können?
>  
>
> Wo ist mein Gedankenfehler?

  
ich nehme an, in der Aufgabenstellung ist ein Tippfehler:
Anstatt [mm] $f\,$ [/mm] auf [mm] $[0,\pi/2]$ [/mm] sollte man wohl eher [mm] $f\,$ [/mm] auf [mm] $[0,\red{\pi}]$ [/mm] betrachten.

Den Hinweis kannst Du gerne dem Aufgabensteller geben.

Denn:
[mm] $f(x)=e^x*\sin(x)$ [/mm] hat als Ableitung [mm] $f'(x)=e^x*\sin(x)+e^x*\cos(x)=e^x(\sin(x)+\cos(x))\,,$ [/mm] und es ist leicht einzusehen, dass [mm] $\sin(x)+\cos(x) [/mm] > 0$ auf [mm] $[0,\pi/2]$ [/mm] gilt [mm] ($e^x [/mm] > 0$ gilt ja eh für alle reellen [mm] $x\,$): $f\,$ [/mm] ist dort also streng monoton wachsend!

Ein Plot bestätigt das auch!

Gruß,
  Marcel

Bezug
                
Bezug
Zwischwertsatz/Satz von Rolle: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 02:05 Mi 11.04.2012
Autor: sissile

Okay, der Satz von rolle ist nun verständlich da
[mm] f(0)=f(\pi) [/mm]
Und dann kann man ja den Satz anwenden.

Und beim Zwischenwertsatz auf f' angewandt
f'(x) = $ [mm] e^x [/mm] $ * sin(x) + $ [mm] e^x [/mm] $ * cos(x)

f'(0)=1
[mm] f'(\pi) [/mm]  =  - [mm] e^{\pi} [/mm]
kann man den Zwischenwertsatz anwenden

Muss man in der Aufgabe noch viel mehr machen?
LG

Bezug
                        
Bezug
Zwischwertsatz/Satz von Rolle: Antwort
Status: (Antwort) fertig Status 
Datum: 05:59 Mi 11.04.2012
Autor: angela.h.b.


> Muss man in der Aufgabe noch viel mehr machen?

Hallo,

nein.
Nur gut aufschreiben.

LG Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]