matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraabsolut irreduzible Polynome
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Algebra" - absolut irreduzible Polynome
absolut irreduzible Polynome < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

absolut irreduzible Polynome: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:24 So 18.03.2012
Autor: Imbecile

Aufgabe
Das Polynom [mm] F(x_{1}, [/mm] ..., [mm] x_{n}) [/mm] mit rationalen Koeffizienten heißt absolut irreduzibel, wenn es über keinem Erweiterungskörper des rationalen Zahlenkörpers in nichttriviale Faktoren zerlegbar ist.

Hallo!

Also, ich muss für ein Seminar aus Algebra ein Referat über einen Buchausschnitt halten. Das Buch nennt sich "Kongruenzen" und ich spreche über das Kapitel Trigonometrische Summen. Also eigentlich nur einen Teil davon, Kongruenzen und trigonometrische Summen. (2. Kapitel)

Ich habe das erste Kapitel gelesen und vollständig verstanden, mein Teil beginnt aber mit einer Definition, die mir leider nicht vollständig klar ist.
Im Prinzip, bedeutet absolut irreduzibel doch einfach nur, dass man es nicht mehr vereinfachen kann, oder?
Ich weiß was ein Erweiterungskörper ist, mein Problem liegt nun eher bei den Faktoren.

Nichttriviale Faktoren bedeutet doch, dass sie [mm] \not= [/mm] 0 sind, oder?
Wie kann ich mir denn so ein irreduzibles Polynom vorstellen?
Ich meine, in dem Buch wird hauptsächlich über Restklassenkörper mod p (p [mm] \in [/mm] Primzahlen) gesprochen. Die Definition wird weiter in einem Beweis verwendet, diesen kann ich jedoch nicht ganz folgen, da es schon bei der Definition hapert.

Kann mit bitte jemand Beispiele für absolut irreduzible Polynome nennen und auch dazu sagen, warum es welche sind. Oder eventuel für eines welches nicht irreduzibel ist und wie man dieses dann in nicht triviale Faktoren zerlegen kann.
Das wäre wirklich sehr nett!

Vielen Dank!
Mit freundlichen Grüßen,
Imbecile

        
Bezug
absolut irreduzible Polynome: Antwort
Status: (Antwort) fertig Status 
Datum: 17:35 So 18.03.2012
Autor: felixf

Moin Imbecile!

> Das Polynom [mm]F(x_{1},[/mm] ..., [mm]x_{n})[/mm] mit rationalen
> Koeffizienten heißt absolut irreduzibel, wenn es über
> keinem Erweiterungskörper des rationalen Zahlenkörpers in
> nichttriviale Faktoren zerlegbar ist.
>  
> Also, ich muss für ein Seminar aus Algebra ein Referat
> über einen Buchausschnitt halten. Das Buch nennt sich
> "Kongruenzen" und ich spreche über das Kapitel
> Trigonometrische Summen. Also eigentlich nur einen Teil
> davon, Kongruenzen und trigonometrische Summen. (2.
> Kapitel)
>  
> Ich habe das erste Kapitel gelesen und vollständig
> verstanden, mein Teil beginnt aber mit einer Definition,
> die mir leider nicht vollständig klar ist.
>  Im Prinzip, bedeutet absolut irreduzibel doch einfach nur,
> dass man es nicht mehr vereinfachen kann, oder?

Ja, und zwar auch nicht ueber algebraischen Koerpererweiterungen. (Sprich: auch nicht ueber dem alg. Abschluss.)

Zum Beispiel ist [mm] $X^2 [/mm] + 1$ ueber [mm] $\IQ$ [/mm] zwar irreduzibel, aber nicht absolut irreduzibel, da es ueber der algebraischen Erweiterung [mm] $\IQ(i)$ [/mm] von [mm] $\IQ$ [/mm] nicht irreduzibel ist. (Genauer: jedes Polynom von Grad $> 1$ in einer Unbestimmten kann niemals absolut irreduzibel sein.)

Ein Beispiel eines absolut irreduziblen Polynoms ist [mm] $X^3 [/mm] - [mm] Y^2$. [/mm]

>  Ich weiß was ein Erweiterungskörper ist, mein Problem
> liegt nun eher bei den Faktoren.
>  
> Nichttriviale Faktoren bedeutet doch, dass sie [mm]\not=[/mm] 0
> sind, oder?

Ja, und auch nicht konstant. Du kannst immer z.B. $X + Y = 2 [mm] \cdot (\frac{1}{2} [/mm] X + [mm] \frac{1}{2} [/mm] Y)$ schreiben. Der Faktor 2 ist aber trivial.

>  Wie kann ich mir denn so ein irreduzibles Polynom
> vorstellen?
>  Ich meine, in dem Buch wird hauptsächlich über
> Restklassenkörper mod p (p [mm]\in[/mm] Primzahlen) gesprochen. Die
> Definition wird weiter in einem Beweis verwendet, diesen
> kann ich jedoch nicht ganz folgen, da es schon bei der
> Definition hapert.
>  
> Kann mit bitte jemand Beispiele für absolut irreduzible
> Polynome nennen und auch dazu sagen, warum es welche sind.

Jedes Polynom vom Typ [mm] $X^3 [/mm] + a [mm] X^2 [/mm] + b X + c - [mm] Y^2 [/mm] - d X Y - e Y$ (mit $a, b, c, d, e$ fest gewaehlt, aber beliebig) ist absolut irreduzibel. Das kann man explizit nachrechnen (schreibe es als Produkt zweier Polynome und fuehre einen Widerspruch her), das ist jedoch etwas muehsam.

Polynome $f [mm] \in \IQ[X]$ [/mm] in einer Unbestimmten sind nur absolut irreduzibel, wenn sie Grad 1 haben: andernfalls sind sie entweder nichtmals irreduzibel (etwa [mm] $X^5$ [/mm] oder $(X + 1) (X + 2)$), oder sie sind ueber dem algebraiscen Erweiterungskoerper $K := [mm] \IQ[X]/(f)$ [/mm] nicht irreduzibel, da sie dort eine Nullstelle haben (naemlich die Restklasse von $X$ in $K$).

Ansonsten, falls dir der Begriff eines normalen irreduziblen Polynoms noch nicht bekannt ist, schau doch erstmal dort nach Beispielen. Hier im Forum sollte es viele geben und auch im Netz.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]