matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExtremwertproblemeabstandsfunktio zwieschen para
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Extremwertprobleme" - abstandsfunktio zwieschen para
abstandsfunktio zwieschen para < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

abstandsfunktio zwieschen para: Zielfunktion
Status: (Frage) beantwortet Status 
Datum: 15:52 Fr 23.11.2007
Autor: Leon.R.

Aufgabe
gegeben ist eine Parabel mit [mm] f(x)=1/2x^2-2x [/mm] und ein Punkt P (4/2).

Gesucht ist der Punkt des Graphen, der vom Punkt P die kürzeste entfernung hat. Und in der Zielfunktion darf ich vor dem Ableiten quadrieren.

Danke für die Hilfe.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
abstandsfunktio zwieschen para: Abstandsformel
Status: (Antwort) fertig Status 
Datum: 16:20 Fr 23.11.2007
Autor: Roadrunner

Hallo Leon!


Verwende hier die Abstandsformel zweier Punkte im [mm] $\IR^2$ [/mm] , welche sich aus dem Satz des Pythagoras ergibt:
$$d(P;Q) \ = \ [mm] \wurzel{\left(x_Q-x_P\right)^2+\left(y_Q-y_P\right)^2 \ }$$ [/mm]

In Deinem Falle gilt halt [mm] $x_Q [/mm] \ = \ x$ sowie [mm] $y_Q [/mm] \ = \ [mm] \bruch{1}{2}*x^2-2x$ [/mm] .


Gruß vom
Roadrunner


Bezug
                
Bezug
abstandsfunktio zwieschen para: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 11:42 Do 29.11.2007
Autor: Leon.R.

irgendwie hab ich einen kleinen Blackout, ich könnte etwas hilfe gebrauchen beim Einsetzen meiner Werte in die oben genannte Funktion.

Danke

Bezug
                        
Bezug
abstandsfunktio zwieschen para: eingesetzt
Status: (Antwort) fertig Status 
Datum: 11:55 Do 29.11.2007
Autor: Roadrunner

Hallo Leon!


$$ d(P;Q) \ = \ [mm] \wurzel{\left(x_Q-x_P\right)^2+\left(y_Q-y_P\right)^2 \ } [/mm] $$
[mm] $$\Rightarrow [/mm] \ \ d(x) \ = \ [mm] \wurzel{\left(x-4\right)^2+\left(\bruch{1}{2}\cdot{}x^2-2x-2\right)^2 \ }$$ [/mm]

Nun noch zusammenfassen unter der Wurzel.


Gruß vom
Roadrunner


Bezug
        
Bezug
abstandsfunktio zwieschen para: Antwort
Status: (Antwort) fertig Status 
Datum: 17:18 Fr 30.11.2007
Autor: mathemak

Hallo!

> gegeben ist eine Parabel mit [mm]f(x)=1/2x^2-2x[/mm] und ein Punkt P
> (4/2).
>  
> Gesucht ist der Punkt des Graphen, der vom Punkt P die
> kürzeste entfernung hat. Und in der Zielfunktion darf ich
> vor dem Ableiten quadrieren.
>  

Versuch' mal folgendes

Stell' die Normale an die Parabel in einem bel. Punkt B$(u [mm] \mid [/mm] f(u))$ auf.

Führe die Punktprobe mit P durch.

Du erhälst eine Gleichung in $u$.

Löse die Gleichung.

Rechne die Entfernungen für diese Werte von $u$ aus.

Die kürzeste Entferung gibt den Abstand.

Graph zeichnen, Normalen einzeichnen.

Gruß

Mathemak

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]