matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe Analysisachsenparallel z z^(2)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Komplexe Analysis" - achsenparallel z z^(2)
achsenparallel z z^(2) < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

achsenparallel z z^(2): injektiv, Korrektur
Status: (Frage) überfällig Status 
Datum: 02:15 Di 11.10.2011
Autor: kushkush

Aufgabe
Die zwei Scharen achsenparalleler Geraden werde unter der Abbildung [mm] $z\mapsto f(z)=z^{2}$ [/mm] auf zwei Scharen von Parabeln abgebildet.

a) Wie sieht die Abbildung einer einzelnen Geraden auf eine einzelne Parabel aus?

b) Ist sie surjektiv, injektiv, 2:1?

c) Was ist der Durchlaufsinn?

d) Gibt es verschiedene Geraden, die auf dieselbe Parabel abgebildet werden? Gibt es Spezialfälle?

e) Untersuche a)-d) für die beiden Hyperbelscharen, welche auf die Scharen achsenparalleler Geraden abgebildet werden.




Hallo!


a) Sei [mm] $y\equiv [/mm] c$ eine Gerade parallel zur Reellen Achse, dann ist [mm] $u=x^{2}-c^{2}$ [/mm] und $v=2xc$. Damit folgt : $u= [mm] \frac{v^{2}}{4c^{2}}-c^{2}$ [/mm]

Sei [mm] $x\equiv [/mm] k$ das Bild einer parallelen Gerade zur y-Achse. Dann ist [mm] $u=k^{2}-y^{2}$ [/mm] und $v=2ky$. Damit folgt : [mm] $u=k^{2}-\frac{v^{2}}{4k^{2}}$ [/mm]


b) $f'(z)=2z [mm] \ne [/mm] 0 \ \ [mm] \forall [/mm] z [mm] \in \IC ^{\*}$. [/mm] Sei also [mm] $f:\IC^{\*} \rightarrow \IC^{\*}$. [/mm]

mit [mm] $f(z_{1})=f(z_{2})) \gdw z_{1}^{2} [/mm] = [mm] z_{2}^{2} \gdw z_{1}^{2}-z_{2}^{2} [/mm] = [mm] (z_{1}-z_{2})(z_{1}+z_{2})=0 \Rightarrow z_{1}=z_{2}$ [/mm] oder [mm] $z_{2}=-z_{1}$ [/mm] also ist f nicht injektiv, aber surjektiv.


Was bedeutet 2:1? dass aus [mm] $f(z_{1})=f(z_{2}))$ [/mm] folgt dass [mm] $z_{1}=-z_{2}$ [/mm] oder [mm] $z_{1}=z_{2}$ [/mm] ?


c) geht man vom Nullpunkt aus gegen [mm] $-\infty$, [/mm] dann wird die Abbildung im Gegeunhrzeigersinn abgebildet, vom Nullpunkt aus gegen [mm] $\infty$ [/mm] im Uhrzeigersinn. geht man vom Nullpunkt aus gegen $i [mm] \infty$ [/mm] , dann im Gegenuhrzeigersinn, gegen $-i [mm] \infty$ [/mm] im Uhrzeigersinn.

d) Die Geraden [mm] $x\equiv [/mm] k$ und [mm] $x\equiv [/mm] -k$ entsprechen denselben Parabeln, genauso wie $y [mm] \equiv [/mm] c$ und [mm] $y\equiv [/mm] -c$. Spezialfälle:, die beiden Winkelhalbierenden bilden gemeinsam auf die ganze imaginäre Achse ab. Die imaginäre Achse selber wird auf [mm] $[0,-\infty]$ [/mm] abgebildet, die reelle Achse auf die  positive reelle Achse.


e)  Die Umkehrbilder lauten [mm] $w=\pm \sqrt{z}$ [/mm]


2a) Welche Kurven werden auf achsenparallele Geraden abgebildet?

Sei $u= [mm] x^{2}-y^{2} [/mm] = a [mm] \Rightarrow \pm [/mm] 1 = [mm] \frac{x^{2}-y^{2}}{|a|}$ [/mm] das ist eine Hyperbelschar, und $v=2xy = b [mm] \Rightarrow y=\frac{b}{2x}$ [/mm]

2b) surjektiv ja, injektiv ohne Beschränkung nein, mit Beschränkung ja, 2:1 ja

2c) analog zu c)

2d) Es werden diejenigen Hyperbeln auf dieselben Geraden abgebildet, die am Nullpunkt aufeinander gespiegelt werden. Die Rechte reelle Achse wird auf die linke abgebildet, die linke reelle Achse auf die untere imaginäre Achse


Ist das so OK?


Danke für jegliche Korrektur !!




        
Bezug
achsenparallel z z^(2): Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 02:20 Do 13.10.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
achsenparallel z z^(2): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 02:34 Do 13.10.2011
Autor: reverend

Hallo kushkush,

die Aufgabe lässt offenbar nicht nur mich ratlos zurück. Ist sie so vollständig?

> Die zwei Scharen achsenparalleler Geraden werde unter der
> Abbildung [mm]z\mapsto f(z)=z^{2}[/mm] auf zwei Scharen von Parabeln
> abgebildet.

Wir befinden uns wohl in [mm] \IC. [/mm] "Die zwei Scharen" scheint sich auf 1) Re(z)=const und Im(z)=const zu beziehen. Oder?
Nur: was für Parabeln sollen das denn sein? Solche in der komplexen Zahlenebene? Die Gerade i=0 liefert aber keine Parabel, und alle anderen auch nicht. Deswegen verstehe ich auch nicht, was Du da im folgenden tust.

Interpretationshinweise würden nicht schaden...

Grüße
reverend



Bezug
                
Bezug
achsenparallel z z^(2): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 03:32 Do 13.10.2011
Autor: kushkush

Hallo reverend,


also es ist

$f(x,y)= u+iv = [mm] (x+iy)^{2} [/mm] = [mm] x^{2}-y^{2}+2ixy [/mm] $
$ [mm] \Rightarrow [/mm] v(x,y) = 2xy ; [mm] u(x,y)=x^{2}-y^{2}$ [/mm]

> keine Parabel

Die Geraden liegen im x-y Koordinatensystem und das Bild dann im u-v Koordinatensystem,


http://www.wolframalpha.com/input/?i=f%28z%29%3Dz%5E%282%29



> Re=const , Im=const





Gruss
kushkush

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]