matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMengenlehreÄquivalenzrelation
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Mengenlehre" - Äquivalenzrelation
Äquivalenzrelation < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Äquivalenzrelation: Richtigkeit meiner Lösung
Status: (Frage) beantwortet Status 
Datum: 15:31 Sa 07.11.2009
Autor: ducan

Aufgabe
M sei die Menge { a, b, c, d, e, f} Ergänzen Sie

(1) die Menge { (e, e), (f,  d), (c, a), (b, f) } zu einer Äquivalenzrelation auf M
mit mindestens zwei Aquivalenzklassen,

(2) die Menge{ (a, a), (f, e), (c, d), (a, b), (c, a), (e, b), (f, d) } zu einer totalen
Ordnung auf M.

Folgender Lösungsansatz:

(1)

(a) e [mm] \sim [/mm] e [mm] \gdw [/mm] e ist reflexsiv

(b) c [mm] \sim [/mm] a [mm] \gdw [/mm] a [mm] \sim [/mm] c [mm] \Rightarrow [/mm] a,c sind symmetrisch

(c) b [mm] \sim [/mm] f [mm] \gdw [/mm] f [mm] \sim [/mm] b (Symmetrie)

(d) f [mm] \sim [/mm] d

(c) in Verbindung mit (d):

(e) f [mm] \sim [/mm] b [mm] \wedge [/mm] f [mm] \sim [/mm] d [mm] \gdw [/mm] b [mm] \sim [/mm] d   ( f, b, d sind transitiv)

Äquivalenzklassen

bei (b)
[mm] [c]\sim:= [/mm] {a [mm] \in [/mm] M | c [mm] \sim [/mm] a }  1. Klasse
[mm] [c]\sim:= [/mm] {c [mm] \in [/mm] M | a [mm] \sim [/mm] c }

bei (c)
[mm] [b]\sim:= [/mm] {f [mm] \in [/mm] M | b [mm] \sim [/mm] f } 2. Klasse
[mm] [f]\sim:= [/mm] {b [mm] \in [/mm] M | f [mm] \sim [/mm] b }

bei (e)
[mm] [b]\sim:= [/mm] {d [mm] \in [/mm] M | b [mm] \sim [/mm] d } 3. Klasse
[mm] [d]\sim:= [/mm] {b [mm] \in [/mm] M | d [mm] \sim [/mm] b }

bei (d)
[mm] [f]\sim:= [/mm] {d [mm] \in [/mm] M | f [mm] \sim [/mm] d } 4. Klasse
[mm] [d]\sim:= [/mm] {f [mm] \in [/mm] M | d [mm] \sim [/mm] f }

(2)
a [mm] \le [/mm] a [mm] \vee [/mm] a [mm] \ge [/mm] a
f [mm] \le [/mm] e [mm] \vee [/mm] f [mm] \ge [/mm] e
c [mm] \le [/mm] d [mm] \vee [/mm] c [mm] \ge [/mm] d
a [mm] \le [/mm] b [mm] \vee [/mm] a [mm] \ge [/mm] b
c [mm] \le [/mm] a [mm] \vee [/mm] c [mm] \ge [/mm] a
e [mm] \le [/mm] b [mm] \vee [/mm] e [mm] \ge [/mm] b
f [mm] \le [/mm] d [mm] \vee [/mm] f [mm] \ge [/mm] d

Daraus habe ich folgendes formuliert:

[mm] \forall [/mm] a,b,c,d,e,f [mm] \in [/mm] M: (f [mm] \le [/mm] d [mm] \ge [/mm] c [mm] \ge [/mm] a [mm] \ge [/mm] b [mm] \le [/mm] e [mm] \le [/mm] f [mm] \ge [/mm] d) [mm] \vee [/mm] (f [mm] \ge [/mm] d [mm] \le [/mm] c [mm] \ge [/mm] a [mm] \ge [/mm] b [mm] \le [/mm] e [mm] \le [/mm] f [mm] \ge [/mm] d)

Ich habe versucht diese Mengen zu einer totalen Ordnung zu formulieren, ich habe nur keine Ahnung ob dies eine Lösung darstellt, bzw ob das überhaupt richtig ist, was ich da formuliert habe.

Ich würde mich sehr über ein Feedback freuen. Es kann natürlich auch sein, dass meine Lösung totaler Humbock ist - in dem Fall würde ich mich über einen richtigen Ansatz oder Lösung sehr freuen.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Mfg Ducan

        
Bezug
Äquivalenzrelation: Antwort
Status: (Antwort) fertig Status 
Datum: 20:15 Sa 07.11.2009
Autor: uliweil

Hallo Ducan,

ich denke, Du hast die Aufgabenstellung nicht richtig verstanden. Deshalb zunächst kurz nochmal einige Hinweise:
Eine Relation R ist ja bekanntlich eine Teilmenge eines kartesischen Produktes M x M, ist also eine Menge von Paaren mit Elementen aus M.
Eine Äquivalenzrelation ist nun eine Relation mit speziellen Eigenschaften. Ich greife hier zunächst die erste heraus, wobei ich die obigen Bezeichnungen benutze:
[mm] \forall [/mm] x [mm] \in [/mm] M: (x,x) [mm] \in [/mm]  R,
was ja bedeutet, dass jedes mögliche Paar zweier gleicher Elemente aus M in R vorkommen muss.
Wenn man jetzt die in (1) aufgeschriebene Menge von Paaren betrachtet, sieht man, dass hier nur (e,e) in dieser Menge vorhanden ist, aber alle anderen Paare gleicher Elemente aus M fehlen.
Spätetstens jetzt sollte die Aufgabenstellung klar werden:
"Ergänzen Sie die Menge ... zu einer Äquivalenzrelation".
Natürlich muss man auch noch die zweite und die dritte Bedingung der Äquivalenzrelationsdefinition prüfen und ggf. weitere Elemente hinzufügen. Nun kann man diese Ergänzung auf viele verschiedene Arten durchführen (man könnte z.B. einfach auf die Idee kommen R = M x M zu nehmen). Dies verhindert nun allerdings die Zusatzforderung, dass mindestens 2 Äquivalenzklassen dabei herauskommen sollen.

Gruß
Uli

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]