matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraÄquivalenzrelationen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Algebra" - Äquivalenzrelationen
Äquivalenzrelationen < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Äquivalenzrelationen: Tipp
Status: (Frage) beantwortet Status 
Datum: 19:53 Mo 24.03.2014
Autor: Kegorus

Aufgabe
Sei A eine  Menge, [mm] R_1 \subseteq R_2 [/mm] Äquivalenzrelationen.
Auf der Faktormenge [mm] A/R_1 [/mm] definiert man:
[mm] R_2/R_1:={(x/R_1,y/R_1): x,y \in A, x R_2 y} [/mm]

zz:

[mm] \forall [/mm] x,y aus A: [mm] (x/R_1,y/R_1) [/mm] aus [mm] R_2/R_1 [/mm] <=> x [mm] R_2 [/mm] y



Es hat den Anschein, dass die Aussage direkt aus der Definition von [mm] R_2/R_1 [/mm] folgt, aber anscheinend ist dies nicht so.
Im zweiten Teil des Beispiels soll man eine Menge A, eine Äquivalenzrelation [mm] R_1 [/mm] und eine Relation [mm] R_2(wenn [/mm] möglich auch Äquivalenzrelation) finden, sodass die obige Äquivalenz nicht für alle x,y aus A gilt [mm] (R_1 [/mm] muss in diesem Bsp nicht notwendigerweise Teilmenge von [mm] R_2 [/mm] sein).
Wäre super, wenn mir jemand weiterhelfen könnte!

        
Bezug
Äquivalenzrelationen: Antwort
Status: (Antwort) fertig Status 
Datum: 04:51 Di 25.03.2014
Autor: tobit09

Hallo Kegorus!


> Sei A eine  Menge, [mm]R_1 \subseteq R_2[/mm]
> Äquivalenzrelationen.
>  Auf der Faktormenge [mm]A/R_1[/mm] definiert man:
>  [mm]R_2/R_1:={(x/R_1,y/R_1): x,y \in A, x R_2 y}[/mm]
>  
> zz:
>  
> [mm]\forall[/mm] x,y aus A: [mm](x/R_1,y/R_1)[/mm] aus [mm]R_2/R_1[/mm] <=> x [mm]R_2[/mm] y


> Es hat den Anschein, dass die Aussage direkt aus der
> Definition von [mm]R_2/R_1[/mm] folgt, aber anscheinend ist dies
> nicht so.

In der Tat folgt die Richtung <= direkt aus der Definition, die Richtung => jedoch nicht:

"[mm](x/R_1,y/R_1)[/mm] aus [mm]R_2/R_1[/mm]" bedeutet nur, dass es [mm] $x',y'\in [/mm] A$ gibt mit $x'R_2y'$ und [mm] $(x'/R_1,y'/R_1)=(x/R_1,y/R_1)$. [/mm]

Zu zeigen ist nun $xR_2y$.


>  Im zweiten Teil des Beispiels soll man eine Menge A, eine
> Äquivalenzrelation [mm]R_1[/mm] und eine Relation [mm]R_2(wenn[/mm] möglich
> auch Äquivalenzrelation) finden, sodass die obige
> Äquivalenz nicht für alle x,y aus A gilt [mm](R_1[/mm] muss in
> diesem Bsp nicht notwendigerweise Teilmenge von [mm]R_2[/mm] sein)

Jedes Beispiel einer Menge $A$ mit zwei Äquivalenzrelationen [mm] $R_1,R_2$ [/mm] darauf, die nicht [mm] $R_1\subseteq R_2$ [/mm] erfüllen, leistet das Gewünschte.

Gib also ein solches Beispiel an und zeige, dass es das Gewünschte leistet.


Viele Grüße
Tobias

Bezug
                
Bezug
Äquivalenzrelationen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:47 Di 25.03.2014
Autor: Kegorus

Vielen Dank für deine Antwort! Ich finde diese Definition ziemlich verwirrend, aber anscheinend bedeutet es, dass es nur irgendwelche Elemente aus der [mm] R_1 [/mm] Äquivalenzklasse gibt, die zueinander in [mm] R_2 [/mm] stehen..

Wenn also [mm] (x'/R_1,y'/R_1) [/mm] = [mm] (x/R_1,y/R_1) \in R_2/R_1 [/mm]
gibt es x'' und y'' aus A mit x''R_2y''
Das kann man so oft wiederholen, bis man die "richtigen", also x und y gefunden hat. Kann das so funktionieren?

Bezug
                        
Bezug
Äquivalenzrelationen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:03 Di 25.03.2014
Autor: tobit09


> Ich finde diese Definition
> ziemlich verwirrend, aber anscheinend bedeutet es, dass es
> nur irgendwelche Elemente aus der [mm]R_1[/mm] Äquivalenzklasse
> gibt, die zueinander in [mm]R_2[/mm] stehen.

Ja, wann immer zwei Äquivalenzklasse K und L bezüglich [mm] $R_1$ [/mm] auch nur jeweils einen Repräsentanten [mm] $k\in [/mm] K$ bzw. [mm] $l\in [/mm] L$ haben, so dass $kR_2l$ gilt, sollen $K$ und $L$ zueinander in Relation stehen. Tatsächlich gilt $kR_2l$ dann aber schon für alle [mm] $k\in [/mm] K$ und [mm] $l\in [/mm] L$, wie du zeigen sollst.


> Wenn also [mm](x'/R_1,y'/R_1)[/mm] = [mm](x/R_1,y/R_1) \in R_2/R_1[/mm]

(Ich hatte [mm] $x',y'\in [/mm] A$ so gewählt, dass zusätzlich $x'R_2y'$ gilt.)

>  gibt
> es x'' und y'' aus A mit x''R_2y''

IRGENDWELCHE [mm] $x'',y''\in [/mm] A$ mit $x''R_2y''$ zu betrachten, dürfte nicht weiterhelfen.

>  Das kann man so oft wiederholen, bis man die "richtigen",
> also x und y gefunden hat. Kann das so funktionieren?

Nein, das sehe ich nicht.


Was bedeutet [mm] $(x'/R_1,y'/R_1)=(x/R_1,y/R_1)$? [/mm]
Es bedeutet [mm] $x'/R_1=x/R_1$ [/mm] und [mm] $y'/R_1=y/R_1$. [/mm]

Von welchen Elementen weißt du also, dass sie bezüglich [mm] $R_1$ [/mm] in Relation stehen?

Benutze danach (!) [mm] $R_1\subseteq R_2$. [/mm]

Bezug
                                
Bezug
Äquivalenzrelationen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:37 Mi 26.03.2014
Autor: Kegorus

Vielen Dank nochmal, ich hab's geschafft!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]