matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMaßtheorieÄußeres Hausdorffmaß
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Maßtheorie" - Äußeres Hausdorffmaß
Äußeres Hausdorffmaß < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Äußeres Hausdorffmaß: Korrektur/Tipp
Status: (Frage) überfällig Status 
Datum: 23:19 Sa 27.10.2012
Autor: Lustique

Eingabefehler: "\left" und "\right" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Aufgabe
a) Sei $\Omega$ eine Menge. Zu $\varepsilon>0$ sei $\mu_\varepsilon\colon \mathcal{P}(\Omega)\to[0, \infty]$ ein äußeres Maß. Dann ist

$\mu\colon \mathcal{P}(\Omega)\to[0, \infty], \quad \mu(E)=\underset{\varepsilon>0}{\sup}\,\mu_\varepsilon(E)$ für alle $E\subseteq \Omega$

ein äußeres Maß. Wir schreiben $\mu = \underset{\varepsilon>0}{\sup}\,\mu_\varepsilon$.

b) Es seien $\alpha > 0$, $\epsilon > 0$. WIr definieren die Mengenfunktion $\mathcal{H}_\alpha^\varepsilon\colon \mathcal{P}(\mathbb{R}^d)\to[0, \infty]$ durch

$\mathcal{H}_\alpha^\varepsilon(E)=\inf\left\{\sum_{j=1}^\infty \left(\mathrm{diam}(F_j)\right)^\alpha:F_j\subseteq\mathbb{R}^d \text{ mit } \mathrm{diam}(F_j)\leqslant \varepsilon \text{ für alle } j\in\mathbb{N} \text{ und } E\subseteq\bigcup_{j=1}^\infty F_j\right\}$.  

Zeigen Sie, dass $\mathcal{H}_\alpha^\varepsilon$ äußeres Maß ist. Zeigen Sie auch, dass $\mathcal{H}_\alpha = \underset{\varepsilon>0}{\sup}\,\mathcal{H}_\alpha^\varepsilon$ ein äußere Maß ist.

Bemerkung: $\mathcal{H}_\alpha$ heißt das $\alpha$-dimensionale äußere Hausdorffmaß.


Hallo zusammen, ich brauche mal wieder etwas Unterstützung bei einer Aufgabe. Ich habe, oder zumindest bin ich mir da relativ sicher, Teil a) schon richtig gelöst, bei b) bin ich mir aber bei einigen Stellen nicht sicher:

Zu zeigen ist ja in b) zunächst:

i) $\mathcal{H}_\alpha^\varepsilon(\emptyset)=0$

ii) $A\subseteq B\subseteq \mathbb{R}^d \Rightarrow \mathcal{H}_\alpha^\varepsilon(A)\leqslant \mathcal{H}_\alpha^\varepsilon(B)$

iii) Für $A_1, A_2, \dotsc \in\mathcal{P}(\mathbb{R^d})$ gilt $\mathcal{H}_\alpha^\varepsilon\left(\bigcup_{k=1}^\infty A_k\right)\leqslant \sum_{k=1}^\infty \mathcal{H}_\alpha^\varepsilon(A_k)$

Mein Beweisversuch:

i) Es ist $\emptyset\in\mathbb{R}^d$ mit $\mathrm{diam}(\emptyset)=0\leqslant \varepsilon$. Sei $F_j = \emptyset$ für alle $j\in\mathbb{N}\Rightarrow \emptyset\subseteq\bigcup_{j=1}^\infty F_j $ und $\sum_{j=1}^\infty\left(\mathrm{diam}(F_j)\right)^\alpha\right) = \sum_{j=1}^\infty 0^\alpha = 0$.

ii) Seien $A\subseteq B\subseteq \mathbb{R}^d$ Mengen. Sei $\{F_j\}_{j\in\mathbb{N}}$ das Mengensystem, dass $B$ so überdeckt, wie für $\mathcal{H}_\alpha^\varepsilon(B)$ nach Definition (ich wusste nicht, wie ich das anders ausdrücken kann, aber ich hoffe man erkennt was gemeint ist; für Vorschläge, was diese Formulierung angeht, bin ich natürlich auch dankbar! :)). Dann überdeckt $\{F_j\}_{j\in\mathbb{N}}$ auch $A$, also folgt $A\subseteq B\subseteq \bigcup_{j=1}^\infty F_j$, und damit $\mathcal{H}_\alpha^\varepsilon(B)\geqslant\mathcal{H}_\alpha^\varepsilon(A)$.

(Muss ich da noch was zu schreiben, oder ist, sozusagen, klar, dass das gilt, da $\leqslant$ ja Gleichheit nicht ausschließt?)

iii) Seien $A_1, A_2, \dotsc \in \mathcal{P}(\mathbb{R}^d)$. Sei nun $\mathcal{H}_\alpha^\varepsilon(A_i)=\inf\left\{\sum_{j=1}^\infty \left(\mathrm{diam}(F_{ij})\right)^\alpha:F_{ij}\subseteq\mathbb{R}^d \text{ mit } \mathrm{diam}(F_{ij})\leqslant \varepsilon \text{ für alle } j\in\mathbb{N} \text{ und } A_i\subseteq\bigcup_{j=1}^\infty F_{ij}\right\}$. Dann ist $\bigcup_{i=1}^\infty A_i \subseteq \bigcup_{i, j=1}^\infty F_{ij}$ und

$\mathcal{H}_\alpha^\varepsilon\left(\bigcup_{i=1}^\infty A_i \right)=\inf\left\{\sum_{j=1}^\infty \left(\mathrm{diam}(F_{ij})\right)^\alpha:F_{ij}\subseteq\mathbb{R}^d \text{ mit } \mathrm{diam}(F_{ij})\leqslant \varepsilon \text{ für alle } i, j\in\mathbb{N} \text{ und } \bigcup_{i=1}^\infty A_i \subseteq\bigcup_{i,j=1}^\infty F_{ij}\right\}$.

Da für Mengen $A, B$ gilt $\inf(A+B) = \inf A + \inf B$, folgt

$\sum_{i=1}^\infty \mathcal{H}_\alpha^\varepsilon(A_i)\geqslant \mathcal{H}_\alpha^\varepsilon\left(\bigcup_{i=1}^\infty A_i \right)$.


Sind die Beweisschritte so in Ordnung (höchstwahrscheinlich nicht, relativ sicher bin ich mir nur bei i)), verbesserungswürdig aber im Grunde richtig, oder kompletter Quatsch? Könnt ihr mir hier helfen?

Stimmt es übrigens, dass "$\mathcal{H}_\alpha = \underset{\varepsilon>0}{\sup}\,\mathcal{H}_\alpha^\varepsilon$ ist äußeres Maß" direkt aus a) folgt, oder ist da noch mehr zu tun?

        
Bezug
Äußeres Hausdorffmaß: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:20 Di 30.10.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]