matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare Algebraalternierende k-From
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Lineare Algebra" - alternierende k-From
alternierende k-From < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

alternierende k-From: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:01 Sa 08.12.2007
Autor: trivialesmathe

Aufgabe
Es seien V und W zwei endl-dim. K-Vektorräume, f:V->W linear und [mm] k\in [/mm] N. Zeigen Sie:
a) [mm] Alt^k(f): Alt^k(W) [/mm] -> [mm] Alt^k(V) [/mm] ist injektiv, wenn f surjektiv ist
b) [mm] Alt^k(f): Alt^k(W) [/mm] -> [mm] Alt^k(V) [/mm] ist surjektiv, wenn f injektiv ist

Hallo,
ich weiß leider nicht, wie ich bei dieser Aufgabe anfangen soll. Ich weiß, was gezeigt werden soll, aber irgendwie finde ich keinen Anfang. Wäre echt nett, wenn mir jemand helfen könnte. Schon mal vielen Dank...

        
Bezug
alternierende k-From: Antwort
Status: (Antwort) fertig Status 
Datum: 02:08 So 09.12.2007
Autor: felixf

Hallo

> Es seien V und W zwei endl-dim. K-Vektorräume, f:V->W
> linear und [mm]k\in[/mm] N. Zeigen Sie:
>  a) [mm]Alt^k(f): Alt^k(W)[/mm] -> [mm]Alt^k(V)[/mm] ist injektiv, wenn f

> surjektiv ist
>  b) [mm]Alt^k(f): Alt^k(W)[/mm] -> [mm]Alt^k(V)[/mm] ist surjektiv, wenn f

> injektiv ist
>
> ich weiß leider nicht, wie ich bei dieser Aufgabe anfangen
> soll. Ich weiß, was gezeigt werden soll, aber irgendwie
> finde ich keinen Anfang. Wäre echt nett, wenn mir jemand
> helfen könnte. Schon mal vielen Dank...

Nehmen wir uns mal a) vor. Du hast also, dass $f$ surjektiv ist. Und jetzt hast du eine alternierende Multilinearform [mm] $\psi [/mm] : [mm] W^k \to [/mm] K$ mit [mm] $\psi(f(v_1), \dots, f(v_k)) [/mm] = 0$ fuer alle [mm] $v_1, \dots, v_k \in [/mm] V$, und du sollst zeigen, dass [mm] $\psi$ [/mm] bereits identisch $0$ ist, also [mm] $\psi(w_1, \dots, w_k) [/mm] = 0$ ist fuer alle [mm] $w_1, \dots, w_k \in [/mm] V$. Wie kannst du das jetzt machen, wenn $f$ surjektiv ist?

Und zu b). Du hast eine alternierende Multilinearform [mm] $\varphi [/mm] : [mm] V^k \to [/mm] K$ gegeben und sollst eine alternierende Multilinearform [mm] $\psi [/mm] : [mm] W^k \to [/mm] K$ finden mit [mm] $\psi(f(v_1), \dots, f(v_k)) [/mm] = [mm] \varphi(v_1, \dots, v_k)$ [/mm] fuer alle [mm] $v_1, \dots, v_k \in [/mm] V$, wenn $f$ injektiv ist.

Sprich, du musst so ein [mm] $\psi$ [/mm] konstruieren. Wie konstruiert man Multilinearformen? Dazu braucht man erstmal eine Basis. Nimm dir doch erstmal eine Basis [mm] $v_1, \dots, v_n$ [/mm] von $V$ und eine Basis [mm] $w_1, \dots, w_m$ [/mm] von $W$, wobei [mm] $f(v_i) [/mm] = [mm] w_i$ [/mm] sei, $1 [mm] \le [/mm] i [mm] \le [/mm] n$. Dann wird das ganze einfacher.

Jetzt musst du sagen, wie [mm] $\psi(w_i, w_j)$ [/mm] aussieht fuer $1 [mm] \le [/mm] i, j [mm] \le [/mm] m$. Welche Werte muss dies denn annehmen fuer $1 [mm] \le [/mm] i, j [mm] \le [/mm] n$? Und kann man das ganze zu einer alternierenden Multilinearform auf $W$ fortsetzen, also kann man die restlichen [mm] $\psi(w_i, w_j)$ [/mm] passend waehlen?

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]