matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche Differentialgleichungenaus Lösung Störfunktion & AB's
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gewöhnliche Differentialgleichungen" - aus Lösung Störfunktion & AB's
aus Lösung Störfunktion & AB's < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

aus Lösung Störfunktion & AB's: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 16:51 So 24.06.2007
Autor: Tekker

Aufgabe
Gegeben ist die inhomogene Differentialgleichung

y''+y=f(x)

bei zunächst unbekannter Störfunktion f(x)

a) bestimmen sie die allgemeine Lösung der zugehörigen homogenen
    DGL
b) Die Lösung der inhomogenen DGL sei [mm] y=x^{2}+sin(x). [/mm] Welche  
    Störfunktion und welche Anfangsbedingungen liegen diesen
    Lösungen zugrunde?

Teilaufgabe a) habe ich lösen können.
[mm] y_{h}=c_{1}*cos(x)+c_{2}*sin(x) [/mm]

Bei Teilaufgabe b) habe ich ein Problem:

Wenn ich die Aufgabe richtig verstanden habe, lautet die Lösung der inhomogenen DGL lautet doch: [mm] y=y_{h}+y_{p}=x^{2}+sin(x), [/mm] das kann ich
umschreiben zu [mm] y_{p}=y_{h}-y=c_{1}*cos(x)+c_{2}*sin(x)-x^{2}-sin(x), [/mm] Daraus könnte man die Anfangsbedingungen bestimmen, weiß aber nicht wie, denn ich könnte die Gleichung bestenfalls zu [mm] y_{p}=c_{1}*cos(x)+-x^{2}+sin(x)*(c_{2}-1) [/mm] umschreiben.
Wie soll ich weiter machen?

Vielen Dank für die Hilfe im vorraus!

mfg Tekker

P.s.: Habe diese Frage in keinem anderen Forum oder auf anderen
        Internetseiten gestellt



        
Bezug
aus Lösung Störfunktion & AB's: Antwort
Status: (Antwort) fertig Status 
Datum: 19:20 So 24.06.2007
Autor: wauwau

SEtzt du die Lösung der inhom. in die DGL ein so erhältst du als Störfunktion [mm] x^2+2 [/mm]

Eine partielle Lösung ist daher aber genau [mm] x^2 [/mm]

daher die allgemein

[mm]a*cos(x)+b*sin(x) + x^2 = x^2+sin(x)[/mm]
daher mussen irgendwelche Anfangswerte so sein dass a=0 und b=1

also z.B. y(0)=0 und [mm] y(\bruch{\pi}{2})= 1+\bruch{\pi^2}{4} [/mm]

Bezug
                
Bezug
aus Lösung Störfunktion & AB's: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:15 So 24.06.2007
Autor: Tekker

Danke, für die Hilfe.

mfg Tekker

Bezug
                        
Bezug
aus Lösung Störfunktion & AB's: Antwort
Status: (Antwort) fertig Status 
Datum: 08:50 Mo 25.06.2007
Autor: wauwau

Gerne

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]