matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheoriebedingte Wahrscheinlichkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Wahrscheinlichkeitstheorie" - bedingte Wahrscheinlichkeit
bedingte Wahrscheinlichkeit < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

bedingte Wahrscheinlichkeit: Fragen zu Lösung
Status: (Frage) beantwortet Status 
Datum: 20:20 Do 28.11.2019
Autor: sancho1980

Aufgabe
DNA-Test: Am Tatort wird eine DNA-Probe sichergestellt. Von 1 Million Menschen hat statistisch gesehen nur einer ein DNA-Profil, das mit dieser Probe übereinstimmt. Nun wird ein DNA-Test an n Verdächtigen durchgeführt. Die Wahrscheinlichkeit, dass der Test irrt, ist 0.001%.

Der Test bei Mr. X ist positiv, und er ist einer von n = 20 möglichen Tätern. Wie groß ist die Wahrscheinlichkeit, dass Mr. X unschuldig ist?

Hallo,

die offizielle Lösung lautet 0,019%.
Kann mir jemand sagen, ob mein Lösungsweg korrekt ist. Ich komme zumindest auf "so ziemlich" das gleiche Ergebnis (mit mehr Nachkommastellen):

POS .. Der DNA-Test schlägt positiv an.
S .. Die Person ist schuldig.

Dann ist [mm] gesucht:P(\overline{S}|POS) [/mm]

Es gilt [mm] P(\overline{S}|POS) [/mm] = [mm] \bruch{P(\overline{S} \cap POS)}{P(POS)} [/mm]

Dann P(POS) ermitteln:

P(POS) = P(POS [mm] \cap [/mm] S) + P(POS [mm] \cap \overline{S}) [/mm] = P(POS | S) P(S) + P(POS | [mm] \overline{S}) P(\overline{S}) [/mm] = 0,99999 [mm] \bruch{1}{20} [/mm] + [mm] \bruch{1}{1000000} \bruch{19}{20} [/mm]

Und jetzt noch [mm] P(\overline{S} \cap [/mm] POS) ermitteln:

P(POS | [mm] \overline{S}) [/mm] = [mm] \bruch{P(\overline{S} \cap POS)}{P(\overline{S})} [/mm]

Also [mm] P(\overline{S} \cap [/mm] POS) = P(POS | [mm] \overline{S}) P(\overline{S}) [/mm] = [mm] \bruch{1}{1000000} \bruch{19}{20} [/mm]

Ist der Lösungsweg korrekt? Wenn ja, dann ist die Aufgabenstellung m.E. nicht konkret genug:

Statt:

"Der Test bei Mr. X ist positiv, und er ist einer von n = 20 möglichen Tätern. Wie groß ist die Wahrscheinlichkeit, dass Mr. X unschuldig ist?"

sollte es m.E. heißen:

"Es gibt n = 20 mögliche Täter, von denen einer mit Sicherheit der Schuldige ist. Der Test ist bei genau einem der 20 möglichen Täter positiv, nämlich bei Mr. X."

Seht ihr das auch so?

        
Bezug
bedingte Wahrscheinlichkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:07 Do 28.11.2019
Autor: hase-hh

Moin,

ich gehe mal davon aus, dass mit dem Ereignis POS gemeint ist, das die DNA mit dem des Täters übereinstimmt. Dann würde gelten P(POS) = [mm] \bruch{1}{1 000 000}. [/mm]  


Die Angabe, "Der Test irrt zu 0,001%", scheint mir unklar.


Ich kategorisiere.  

Merkmal  S (Person ist schuldig)  
Merkmal  POS (DNA stimmt mit gefundener überein)


M.E. irrt der Test, wenn

1. die Person schuldig ist (S), und der Test negativ [mm] (\overline{POS}) [/mm] ausfällt.
2. die Person unschuldig ist [mm] (\overline{S}), [/mm] und der Test positiv  (POS)  ausfällt.

Bezieht sich die die genannte Wahrscheinlichkeit 0,001 % also auf einen Pfad oder auf beide Pfade???


M.E. wird hier davon ausgegangen, dass unter den 20 Verdächtigen genau ein Schuldiger ist. Allerdings können mehrere Testergebnisse positiv sein, genauso wie alle Testeregbnsise negativ sein können.

Ich gehe also davon aus, dass P(S) = [mm] \bruch{1}{20} [/mm]  und [mm] P(\overline{S}) [/mm] = [mm] \bruch{19}{20} [/mm]  

Diese würden für mich die 1. Stufe des Baumdiagramms ergeben.


Das umgekehrte Baumdiagramm   mit  POS bzw. [mm] \overline{POS} [/mm] mit den Wahrscheinlichkeiten  

P(POS) = [mm] \bruch{1}{1000000} [/mm]  bzw.  [mm] P(\overline{POS}) [/mm] = [mm] \bruch{999999}{1000000} [/mm]  in der 1. Stufe beginnen.


Die Wahrscheinlichkeit, dass Mr. X unschuldig ist, wird berechnet durch:

P(POS | [mm] \overline{S}) [/mm] = [mm] \bruch{P(POS \cap \overline{S})}{P(\overline{S})} [/mm]


Für die ggf. hilfreiche Vierfeldertafel fehlt mir eine Angabe, bzw. müsste ich wissen, wie man die 0,001% da einbauen könnte. :-)

Mehr fällt mir gerade nicht ein...




Bezug
                
Bezug
bedingte Wahrscheinlichkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:38 Do 28.11.2019
Autor: sancho1980


> Moin,
>  
> ich gehe mal davon aus, dass mit dem Ereignis POS gemeint
> ist, das die DNA mit dem des Täters übereinstimmt. Dann
> würde gelten P(POS) = [mm]\bruch{1}{1 000 000}.[/mm]  
>
>
> Die Angabe, "Der Test irrt zu 0,001%", scheint mir unklar.
>
>
> Ich kategorisiere.  
>
> Merkmal  S (Person ist schuldig)  
> Merkmal  POS (DNA stimmt mit gefundener überein)
>  
>
> M.E. irrt der Test, wenn
>
> 1. die Person schuldig ist (S), und der Test negativ
> [mm](\overline{POS})[/mm] ausfällt.
> 2. die Person unschuldig ist [mm](\overline{S}),[/mm] und der Test
> positiv  (POS)  ausfällt.

Nein. Der Test irrt dann, wenn er:

1) für eine Person positiv ausfällt, obwohl die Person nicht das gesuchte DNA-Profil hat.
2) für eine Person negativ ausfällt, obwohl die Person das gesuchte DNA-Profil hat.

Der Täter hat mit Sicherheit das gesuchte DNA-Profil. Er ist aber nicht der Einzige (auf der ganzen weiten Welt) mit diesem DNA-Profil, denn statistisch gibt es unter 1 Million Menschen immer einen mit diesem Profil. Gut möglich also, dass es unter den 20 Verdächtigen noch einen weiteren (Unschuldigen) mit genau diesem Profil gibt. Auch hier muss der Test (sofern er nicht irrt), natürlich positiv ausfallen.

> Die Wahrscheinlichkeit, dass Mr. X unschuldig ist, wird
> berechnet durch:
>  
> P(POS | [mm]\overline{S})[/mm] = [mm]\bruch{P(POS \cap \overline{S})}{P(\overline{S})}[/mm]

Ich denke das kann nicht stimmen.P(POS | [mm] \overline{S}) [/mm] ist die Wahrscheinlichkeit, dass der Test für eine Person positiv ausfällt, obwohl sie unschuldig ist, also

P(POS | [mm] \overline{S}) [/mm] = [mm] \bruch{1}{1000000} [/mm]

Gesucht ist aber [mm] P(\overline{S} [/mm] | POS), also die Wahrscheinlichkeit, dass die Person unschuldig ist, obwohl der Test positiv ausfällt (genau andersrum halt).

Bezug
        
Bezug
bedingte Wahrscheinlichkeit: Aantwort (teilweise richtig)
Status: (Antwort) fertig Status 
Datum: 08:16 Fr 29.11.2019
Autor: HJKweseleit


> DNA-Test: Am Tatort wird eine DNA-Probe sichergestellt. Von
> 1 Million Menschen hat statistisch gesehen nur einer ein
> DNA-Profil, das mit dieser Probe übereinstimmt. Nun wird
> ein DNA-Test an n Verdächtigen durchgeführt. Die
> Wahrscheinlichkeit, dass der Test irrt, ist 0.001%.
>  
> Der Test bei Mr. X ist positiv, und er ist einer von n = 20
> möglichen Tätern. Wie groß ist die Wahrscheinlichkeit,
> dass Mr. X unschuldig ist?
>  Hallo,



Präzisierung:
- Genau einer der 20 Verdächtigen ist der Täter (kämen mehr in Frage, würde die Zahl 20 gar nicht erwähnt).
- Der Täter hat mit sicherheit das DNA-Profil, die Test-unsicherheit von 0,001 % trifft hier nicht zu.
- Die anderen 19 Verdächtigen wurden (noch) nicht getestet.

Dann ist unser Freund mit folgenden Wahrscheinlichkeiten unschuldig:

a) Mit Sicherheit, wenn der Test versagt hat, also mit 0,00001
b) Wenn der Test Recht hat (W. = 0,99999), aber auch noch andere Verdächtige das DNA-Profil haben.

1. Genau ein weiterer hat auch das Profil. Dafür gibt es 19 Mgl., für jede beträgt die W. [mm] 0,000001*0,999999^{18}. [/mm] In diesem Fall beträgt die W. dafür, dass der andere und nicht unser Freund schuldig ist, 0,5. Zusammengefasst: [mm] 19*0,000001*0,999999^{18}*\bruch{1}{2}*0,99999 [/mm] (letzter Faktor für "Test war korrekt").

2. Genau 2 weitere haben auch das Profil. Dafür gibt es [mm] \vektor{19 \\ 2} [/mm] Mgl., für jede beträgt die W. [mm] 0,000001^2*0,999999^{17}. [/mm] In diesem Fall beträgt die W. dafür, dass einer der anderen und nicht unser Freund schuldig ist, [mm] \bruch{2}{3}. [/mm] Zusammengefasst: [mm] \vektor{19 \\ 2}0,000001^2*0,999999^{17}*\bruch{2}{3}*0,99999. [/mm]
...
...
19. Genau 19weitere haben auch das Profil. Dafür gibt es [mm] \vektor{19 \\ 19} [/mm] Mgl., für jede beträgt die W. [mm] 0,000001^{19}*0,999999^{0}. [/mm] In diesem Fall beträgt die W. dafür, dass einer der anderen und nicht unser Freund schuldig ist, [mm] \bruch{19}{20}. [/mm] Zusammengefasst: [mm] \vektor{19 \\ 19}0,000001^{19}*0,999999^{0}*\bruch{19}{20}*0,99999. [/mm]

Jetzt alles schön aufsummieren. Wegen der verschiedenen Brüche sehe ich keine Möglichkeit, auf Gegenwahrscheinlichkeiten umzusteigen.

              
Du erhältst ungefähr 0,00001949984799 = 0,001949984799 %.

Bezug
                
Bezug
bedingte Wahrscheinlichkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:53 Fr 29.11.2019
Autor: sancho1980

Ok, ich werde heute Abend mal den Autoren anschreiben, da du ja auf ein anderes Ergebnis kommst (0,019 % vs 0,0019%)

Bezug
                
Bezug
bedingte Wahrscheinlichkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:04 Fr 29.11.2019
Autor: Gonozal_IX

Hiho,

du berücksichtigst zu beginn etwas, das du später unterschlägst:

>  - Der Täter hat mit sicherheit das DNA-Profil, die Test-unsicherheit von 0,001 % trifft hier nicht zu.

d.h. im Umkehrschluss aber auch, dass deine Berechnung für die Existenz desselben DNA-Profils bei den anderen 19 Menschen fehlerhaft ist.
Denn: Ist X unschuldig, tritt das DNA-Profil sicher unter den 19 anderen Beschuldigten mindestens einmal auf.

Gruß,
Gono

Bezug
                        
Bezug
bedingte Wahrscheinlichkeit: korrigierte falsche Antwort
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:59 Fr 29.11.2019
Autor: HJKweseleit

Dieser Artikel ist leider auch fehlerhaft, ich weiß nicht, wie man ihn als fehlerhaft kennzeichnet.


Hallo Gono,
du hast völlig Recht, ich habe nicht aufgepasst.

Die Fälle b) von 1 bis 19 bleiben, wie sie sind.
Der Fall a) kann nur eintreten, wenn mindestens einer der anderen 19 die passende DNA hat. Dass keiner sie hat, hat die Wahrscheinlichkeit [mm] 0,999999^{19}= [/mm] 0,999981, die W. für mindestens einen ist somit 1-0,999981000171=0,000018999829

Damit a) Eintritt, nämlich dass der Kandidat nicht die passende DNA hat, muss auch mit dieser W. zusätzlich mindestens ein weiterer Kandidat die DNA haben.

Somit muss der Wert aus a), 0,00001, zu 0,00001*0,000018999829 = 0,00000000018999829 korrigiert werden, und man erhält die gesuchte W. für die Unschuld zu 0,00095 %.

Man kann auch mit Hilfe mehrerer Bäume das Ganze darstellen. Wenn der Kandidat unschuldig sein soll, muss mindestens ein weiterer, höchstens alle 19, die passende DNA haben. Für den Fall, dass genau n andere ebenfalls die DNA haben (1 [mm] \le [/mm] n [mm] \le [/mm] 19) ergibt sich der folgende Wahrscheinlichkeitsbaum:

[Dateianhang nicht öffentlich]

Dabei steht unten schon die aus beiden Teilzweigen summierte W. für die Unschuld des Kandidaten. Die Summe über n von 1 bis 20 ergibt dann 0,0000095 oder 0,00095 %. Der Fall a) wurde also in die Fälle b) in den rechten Zweigen mit erfasst.


Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
Bezug
                                
Bezug
bedingte Wahrscheinlichkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:09 So 01.12.2019
Autor: sancho1980

Also ich bin mittlerweile vollends verwirrt, ob jetzt die hier vorgeschlagene Lösung oder die offizielle Lösung richtig ist. Ich selber komme mittlerweile auf das Ergebnis

[mm] P(\overline{S} [/mm] | POS) = [mm] \bruch{P(\overline{S} \cap POS)}{P(POS)} [/mm] = [mm] \bruch{P(POS | \overline{S}) P(\overline{S})}{P(POS \cap S) + P(POS \cap \overline{S})} [/mm] = [mm] \bruch{P(POS | \overline{S}) P(\overline{S})}{P(POS \cap S) + P(POS | \overline{S}) P(\overline{S})} [/mm] = [mm] \bruch{1}{\bruch{P(POS \cap S)}{P(POS | \overline{S}) P(\overline{S})} + 1} [/mm] = [mm] \bruch{1}{\bruch{P(POS | S) P(S)}{P(POS | \overline{S}) P(\overline{S})} + 1} [/mm] = [mm] \bruch{1}{\bruch{P(POS | S) P(S)}{(P(POS | \overline{S} \cap DNA) + P(POS | \overline{S} \cap \overline{DNA})) P(\overline{S})} + 1} [/mm] = [mm] \bruch{1}{\bruch{P(POS | S) P(S)}{(P(POS | \overline{S} | DNA) P(DNA) + P(POS | \overline{S} | \overline{DNA}) P(\overline{DNA})) P(\overline{S})} + 1} [/mm] = [mm] \bruch{1}{\bruch{P(POS | DNA) P(S)}{(P(POS | DNA) P(DNA) + P(POS | \overline{DNA}) P(\overline{DNA})) P(\overline{S})} + 1} [/mm] = [mm] \bruch{1}{\bruch{0,99999 \bruch{1}{20}}{(0,99999 \bruch{1}{1000000} + 0,00001 \bruch{999999}{1000000}) \bruch{19}{20}} + 1} [/mm] = 0,00023152722485 [mm] \hat= [/mm] 0,02 %

S .. Kandidat ist schuldig
POS .. Test ist positiv für Kandidat
DNA .. Kandidat hat Täter-DNA

Bezug
                                        
Bezug
bedingte Wahrscheinlichkeit: korrekte Abschätzung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 Mo 02.12.2019
Autor: HJKweseleit

Ich kann den Fehler in deiner Berechnung nicht finden, bin allerdings mit der Bayesschen Schreibweise schon immer auf Kriegsfuß gewesen.

Eine grobe Abschätzung zeigt aber, dass dein Ergebnis nicht stimmen kann. Ich ändere die Aufgabe mal folgendermaßen ab:

"Von den anderen 19 Kandidaten ist auf jeden Fall einer der Täter, wenn er die entsprechende DNA hat."

Es dürfte klar sein, dass jetzt die W. für die Unschuld unseres Kandidaten gegenüber der ursprünglichen Aufgabenstellung gestiegen ist.

Zu erwarten sind nun nach der Binomialverteilung [mm] \bruch{19}{1 000 000}=0,000019 [/mm] Täter, und mit dieser Wahrscheinlichkeit ist unser Freund dann unschuldig. Das wären aber 0,0019% statt deiner 0,02 %, und der wahre Wert liegt noch darunter, weil unser Kandidat ja trotz der anderen möglichen Täter selber immer noch in Frage kommt.

Bezug
                                        
Bezug
bedingte Wahrscheinlichkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:58 Di 03.12.2019
Autor: HJKweseleit

Ich glaube mittlerweile, dass die einfachen Bayesschen Wahrscheinlichkeiten hier gar nicht erfassbar sind, wie man an folgender Überlegung sieht:


[mm]P(\overline{S}[/mm] | POS) = [mm]\bruch{P(\overline{S} \cap POS)}{P(POS)}[/mm]


S .. Kandidat ist schuldig
  POS .. Test ist positiv für Kandidat
  DNA .. Kandidat hat Täter-DNA

P(POS) sollte klar sein - oder?

P(POS)=1, da der Test schon erfolgt ist oder

[mm] P(POS)=\bruch{1}{20}0,99999+\bruch{19}{20}(0,000001*0,99999+0,999999*0,00001), [/mm] da der Kandidat mit [mm] \bruch{1}{20} [/mm] der Täter ist, somit die DNA hat und der Test das mit 0,99999 angibt oder mit [mm] \bruch{19}{20} [/mm] nicht der Täter ist, mit [mm] a)\bruch{1}{1000000}trotzdem [/mm] die DNA hat, der Test das mit 0,99999 angibt oder b) er mit 0,999999 nicht die DNA hat, der Test das aber trotzdem sagt. oder ist

P(POS)=0,000001*0,99999+0,999999*0,00001 wie für jeden anderen Menschen in der Bevölkerung?

Und was sagt uns [mm] P(\overline{S} \cap [/mm] POS)?

Unschuldig ist der Kandidat mit [mm] \bruch{19}{20}, [/mm] das müssten wir jetzt mit einem der obigen Werte multiplizieren und dann aber wieder durch den teilen - oder doch nicht. und wie macht sich dabei die Tatsache bemerkbar, dass für "unschuldig" ein anderer die DNA haben muss, was ganz unwahrscheinlich ist? Das weitere Aufdröseln in deiner Rechnung bringt auch keine Klarheit darüber, ob die von dir eingesetzten Zahlen mit den Formelausdrücken kompatibel sind. Formal habe ich an der Aufdröselei nichts auszusetzen.



Bezug
                                                
Bezug
bedingte Wahrscheinlichkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:45 Mi 04.12.2019
Autor: sancho1980

Also ich habe mittlerweile eine Antwort vom []Autoren bekommen. Zunächst die Antwort auf meine folgende Frage zur Aufgabenstellung:

"Zum Einen wäre es m.E. relevant zu wissen, ob Mr. X der einzige Verdächtige ist, für den der DNA-Test positiv ausfällt bzw. ob der Täter *mit Sicherheit* unter den 20 Verdächtigen ist."

Die Antwort:

"Ja, so ist die Aufgabe zu verstehen. Sonst waere sie nicht loesbar, da ich ja irgendeine Annahme fuer P(S) machen muss."

Zu meiner Lösung:

> [mm]P(\overline{S}[/mm] | POS) = [mm]\bruch{P(\overline{S} \cap POS)}{P(POS)}[/mm]
> = [mm]\bruch{P(POS | \overline{S}) P(\overline{S})}{P(POS \cap S) + P(POS \cap \overline{S})}[/mm]
> = [mm]\bruch{P(POS | \overline{S}) P(\overline{S})}{P(POS \cap S) + P(POS | \overline{S}) P(\overline{S})}[/mm]
> = [mm]\bruch{1}{\bruch{P(POS \cap S)}{P(POS | \overline{S}) P(\overline{S})} + 1}[/mm]
> = [mm]\bruch{1}{\bruch{P(POS | S) P(S)}{P(POS | \overline{S}) P(\overline{S})} + 1}[/mm]
> = [mm]\bruch{1}{\bruch{P(POS | S) P(S)}{(P(POS | \overline{S} \cap DNA) + P(POS | \overline{S} \cap \overline{DNA})) P(\overline{S})} + 1}[/mm]
> = [mm]\bruch{1}{\bruch{P(POS | S) P(S)}{(P(POS | \overline{S} | DNA) P(DNA) + P(POS | \overline{S} | \overline{DNA}) P(\overline{DNA})) P(\overline{S})} + 1}[/mm]
> = [mm]\bruch{1}{\bruch{P(POS | DNA) P(S)}{(P(POS | DNA) P(DNA) + P(POS | \overline{DNA}) P(\overline{DNA})) P(\overline{S})} + 1}[/mm]
> = [mm]\bruch{1}{\bruch{0,99999 \bruch{1}{20}}{(0,99999 \bruch{1}{1000000} + 0,00001 \bruch{999999}{1000000}) \bruch{19}{20}} + 1}[/mm]
> = 0,00023152722485 [mm]\hat=[/mm] 0,02 %
>  
> S .. Kandidat ist schuldig
>  POS .. Test ist positiv für Kandidat
>  DNA .. Kandidat hat Täter-DNA

... schreibt er:

"Wenn ich den letzen symbolischen Ausdruck in der Formel auswerte bekomme ich

0.000208958

und das ist auch unsere Loesung! Die uerpruenglich im Buch gedruckete Loesung 0,019% erhaelt man wenn man vernachlaessigt, dass unter den 19 unschuldigen Personen jemand die Taeter-DNA hat."

Ich habe meins allerdings jetzt noch zwei weitere Male in den Taschenrechner eingetippt und bekomme immer wieder das Ergebnis 0,00023152722485 (statt 0.000208958). Ich sehe auch nicht, dass ich irgendein Symbol mit falschen Werten ersetze.

Zu deiner Lösung schreibt er:

"Ich denke hier wird eine etwas andere Fragestellung geloest. Bei der obigen Loesung geht man davon aus, dass die restlichen Personen noch nicht getestet wurden (man also keine Information ueber deren Testergebnis hat). Geht man davon aus, dass die andren Personen auch getestet wurden und “negativ” sind, so sind das natuerlich zusaetzliche Bedingungen die die Wahrscheinlichkeit, dass X unschuldig ist, weiter nach unten druecken."

Scheint als hätte so jeder seine eigene Lesart von der Aufgabenstellung.

Wenn meine Formel aber korrekt zu sein scheint, wurmt es mich schon, nicht auf das richtige Ergebnis zu kommen ...

Bezug
                                                        
Bezug
bedingte Wahrscheinlichkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:39 Fr 06.12.2019
Autor: Gonozal_IX

Hiho,

> "Ich denke hier wird eine etwas andere Fragestellung
> geloest. Bei der obigen Loesung geht man davon aus, dass
> die restlichen Personen noch nicht getestet wurden (man
> also keine Information ueber deren Testergebnis hat). Geht
> man davon aus, dass die andren Personen auch getestet
> wurden und “negativ” sind, so sind das natuerlich
> zusaetzliche Bedingungen die die Wahrscheinlichkeit, dass X
> unschuldig ist, weiter nach unten druecken."

Das sind aber auch zusätzliche Informationen, die für die Lösung relevant sind, und zwar essenziell! Mal ganz davon abgesehen: wenn deren DNA laut Test nicht mit dem Täter übereinstimmt, warum sind sie dann noch Verdächtige?

Gruß,
Gono

Bezug
                                                        
Bezug
bedingte Wahrscheinlichkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:55 Fr 06.12.2019
Autor: HJKweseleit


> Zu deiner Lösung schreibt er:
>  
> "Ich denke hier wird eine etwas andere Fragestellung
> geloest. Bei der obigen Loesung geht man davon aus, dass
> die restlichen Personen noch nicht getestet wurden (man
> also keine Information ueber deren Testergebnis hat). Geht
> man davon aus, dass die andren Personen auch getestet
> wurden und “negativ” sind, so sind das natuerlich
> zusaetzliche Bedingungen die die Wahrscheinlichkeit, dass X
> unschuldig ist, weiter nach unten druecken."



Das ist eine falsche Sicht meiner Berechnung.

Ich gehe nicht davon aus, dass eine andere Person getestet wurde.
Ich soll die W. dafür berechnen, dass unser Kandidat unschuldig ist. Das kann aber nur dann der Fall sein, wenn mindestens eine andere Person schuldig ist, und diese muss doch offenbar die DNA haben (sonst gibt das ganze DNA-Gerechne keinen Sinn).

Da die anderen Personen noch nicht (!) getestet sind, berechne ich die Wahrscheinlichkeiten (!) für die Fälle, dass 1, 2, 3,... der anderen auch die DNA haben. In diesen Fällen kann(!) der Kandidat unschuldig sein: Er hat die DNA überhaupt nur mit der W. 1/11 (wenn allerdings kein anderer sie hat, muss er sie haben, da ja einer der Täter ist), und wenn er und genau ein anderer die DNA hat, ist unser Kandidat nur mit der W. 1/11 * 1/2 (er hat tatsächlich die DNA, und da beide sie haben, ist er mit W. 1/2 der Täter) = 1/22 der Täter, die Unschuldsw. also 21/22.

Also: Wenn ich davon ausgehen würde, dass die anderen negativ getestet wurden, wäre die Unschuldswahrscheinlichkeit für den Kandidaten fast 0, denn die anderen haben die DNA dann nur (jeweils) mit der W. 0,000001*0,00001 (ein anderer hat DNA und Test hat versagt), während unser Kandidat sie mit 1/11 hat. Der zweite Faktor käme hinzu und würde die Unschuldsw. total absenken, also viel kleiner als meinen Wert machen.

Wenn ich davon ausginge, dass jemand positiv getestet wurde, hätte der mit der W. 0,99999 (also fast 1) die DNA, unser Kandidat aber nur mit 1/11, die Unschuldsw. wäre dann fast 21/22 statt 0,00181 %.

Ich gehe gerade davon aus, dass niemand getestet wurde, sondern von den W.keiten dafür, dass jemand der anderen die DNA hat und daher auch als Täter in Frage kommt. Wenn unser Kandidat unschuldig ist - und nur diesen Zweig verfolge ich - , dann MUSS jemand anderes die DNA haben, unabhängig von einem Test, und damit rechne ich weiter. Dabei können aber auch theoretisch mehrere der anderen die DNA haben (aber dass ist so unwahrscheinlich, dass das Gesamtergebnis fast dem Ergebnis für nur einen weiteren DNA-Kandidaten entspricht).

Ich behaupte nach wie vor:

- Mein Beitrag "korrekte Abschätzung" stimmt, und daher ist die Lösung des Autors falsch.

- Meine "richtige Antwort" stimmt ebenfalls. Die einzige Ungenauigkeit darin besteht in der Aufrundung auf 1/11=0,090909090909... statt 0,09090834711, was einen Fehler von 0,0008 % vom Endwert bedeutet (mein Endwert müsste sogar noch ein bisschen verkleinert werden). Da ich alle 19 Fälle aufsummiert habe, kann die Unschuldswahrscheinlichkeit nicht höher als 0,0018136203 % sein.

Vielleicht schickst du dem Autor nochmals die beiden genannten und diesen Beitrag zu.



Zu deiner Berechnung: Ich habe dir noch die Mitteilung "Fehler gefunden" zugesandt, die erklären kann, warum deine Berechnung nicht stimmt. Allerdings komme ich beim Durchrechnen deiner Formel auch auf den Zahlenwert des Autors. Falls der deine Umformungsschritte für logisch richtig hält, sende ihm bitte auch die Mitteilung "Fehler gefunden" zu.

Zum Rechenvergleich aber hier noch die Zahlen:

Klammer im untersten Nenner: a = 0,99999/1000000+0,00001*0,999999 =  0,00001099998
mal 19/20: b = 0,000010449981
mit dem Zähler verrechnet: c = 0,99999/20/b = 4784,649848
mit der 1: d = c+1 = 4785,649848
Kehrwert: e = 1/d = 0,0002089580374

Bezug
                                        
Bezug
bedingte Wahrscheinlichkeit: Fehler gefunden
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:23 Do 05.12.2019
Autor: HJKweseleit

Ich habe mich nochmal auf die Fehlersuche begeben und folgenden Fehler gefunden (das schließt nicht aus, dass noch weitere Umformungen fehlerhaft sind):

... = [mm]\bruch{1}{\bruch{P(POS | S) P(S)}{P(POS | \overline{S}) P(\overline{S})} + 1}[/mm]  = [mm]\bruch{1}{\bruch{P(POS | S) P(S)}{(P(POS | \overline{S} \cap DNA) + P(POS | \overline{S} \cap \overline{DNA})) P(\overline{S})} + 1}[/mm] ...

Es gilt NICHT: [mm] P(A|B)=P(A|B\cap C)+P(A|B\cap \overline{C}), [/mm] wie das folgende Beispiel zeigt. Dabei sind die Zahlen die Anzahl der Elemente in den Teilfeldern, es gelte die LAPLACE-Wahrscheinlichkeit.

[Dateianhang nicht öffentlich]

Dann ist [mm] P(A|B)=\bruch{3+30}{3+30+7+20}=\bruch{33}{60}=\bruch{11}{20} [/mm]
[mm] P(A|B\cap C)=\bruch{3}{3+7}=\bruch{3}{10}=\bruch{6}{20} [/mm]
[mm] P(A|B\cap \overline{C})=\bruch{30}{30+20}=\bruch{30}{50}=\bruch{3}{5}=\bruch{12}{20}, [/mm]

aber [mm] P(A|B)=\bruch{11}{20} \ne P(A|B\cap C)+P(A|B\cap \overline{C})=\bruch{6}{20}+\bruch{12}{20}=\bruch{18}{20}. [/mm]

Daher funktioniert deine Berechnung mit den BAYESschen Symbolen nicht.

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
Bezug
        
Bezug
bedingte Wahrscheinlichkeit: zwei falsche Beispiele
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:19 Fr 29.11.2019
Autor: HJKweseleit

Staatsanwalt: Und weil es so unwahrscheinlich ist, dass der Angeklagte unschuldig ist, kann er mit an Sicherheit grenzender Wahrscheinlichkeit zu lebenslänglich verurteilt werden.

Rechtsanwalt: Keiner der anderen Verdächtigen wurde untersucht. Wäre nur ein einziger mit der "passenden" DNA dabei, würde die Unschuldswahrscheinlichkeit meines Mandanten von 0,002 % sofort auf 50 % sinken. Wegen dieser Unterlassung alleine ist mein Mandant schon freizusprechen. Tatsächlich sieht die Sache noch günstiger für ihn aus. Hier der dazu passende Wahrscheinlichkeitsbaum:

[Dateianhang nicht öffentlich]

Wie sie sehen, beträgt die W. für die Schuld meines Mandanten immer noch nur ca. 1/20. Er kann ja nichts dafür, dass er zufällig die "passende" DNA hat.

Staatsanwalt: Das sehe ich ganz anders, mein W.-Baum sieht so aus:

[Dateianhang nicht öffentlich]


Somit beträgt die W. für die Unschuld des Angeklagten nur

[mm] \bruch{0,0000009499905+0,94999905}{0,0000009499905+0,94999905+0,0499999}\approx [/mm] 0,0002089563661, also ca. 0,02 %.





Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
Anhang Nr. 2 (Typ: JPG) [nicht öffentlich]
Bezug
        
Bezug
bedingte Wahrscheinlichkeit: richtige Antwort
Status: (Antwort) fertig Status 
Datum: 01:34 Mi 04.12.2019
Autor: HJKweseleit

Autsch, autsch, autsch! Ich binn auf die dümmste Falle der bedingten W. hereingefallen, indem ich die W. für "Der Kandidat hat DNA" zu 0,99999 angesetzt habe. Das ist völlig falsch, und deshalb sind alle meine bisherigen Berechnungen auch fehlerhaft, allerdings stimmt meine Abschätzung von 16.58 Uhr und auch die Argumentation.

[Dateianhang nicht öffentlich]

Nach der bedingten W. hat der Kandidat die DNA nur mit einer W. von [mm] \bruch{0,00000099999}{0,00000099999+0,00000999999}= [/mm] 0,09090834711 [mm] \approx \bruch{1}{11}. [/mm] Das ändert natürlich alles!

Die folgenden Überlegungen sind aber wieder entsprechend meiner ersten Ausführung: Der Kandidat kann nur dann unschuldig sein, wenn es mindestens einen anderen Kandidaten mit der DNA gibt. Für n weitere Kandidaten (1 [mm] \le [/mm] n [mm] \le [/mm] 19) gilt:

[Dateianhang nicht öffentlich]


Für genau einen anderen Kandidaten beträgt die W. laut Baum [mm] \vektor{19 \\ 1}*0,000001^1*0,999999^{18}(\bruch{1}{11}*\bruch{1}{2}+\bruch{10}{11})=0,000018136 [/mm]

Für genau 2 andere Kandidaten beträgt die W. laut Baum [mm] \vektor{19 \\ 2}*0,000001^2*0,999999^{17}(\bruch{1}{11}*\bruch{2}{3}+\bruch{10}{11})=... [/mm]

usw. bis zu 19 Kandidaten.

Alles aufsummiert ergibt
              
0,000018136203=0,0018136203 %,

wobei die Summanden ab n=2 viel winziger als der Wert für n=1 sind und keinen wesentlichen Beitrag mehr leisten.



Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
Anhang Nr. 2 (Typ: JPG) [nicht öffentlich]
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]