matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationbestimmtes Integral
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integration" - bestimmtes Integral
bestimmtes Integral < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

bestimmtes Integral: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 13:05 So 21.05.2006
Autor: FlorianJ

Aufgabe
Man löse: [mm] \integral_{1}^{e}{ x^{2}ln(x)dx} [/mm]

Mahlzeit,
bei der Berechnung des Integrals bin ich wie folgt vorgegangen:

Partielle Integration:
[mm] \integral_{}^{}{u'vdx} [/mm] = u*v - [mm] \integral_{}^{}{uv'dx} [/mm]

mit [mm] u=x^{2} [/mm] u'=2x
und v=ln(x) [mm] v'=\bruch{1}{x} [/mm]

=> [mm] \integral_{1}^{e}{2xlnxdx} [/mm] = [mm] x^{2}*ln(x) [/mm] - [mm] \integral_{1}^{e}{x dx} [/mm]

= [mm] x^{2} [/mm] ln(x) - [mm] \bruch{1}{2}x^{2} [/mm]

eingesetzt:
= [mm] (e^{2}*ln(e) [/mm] - [mm] \bruch{1}{2}e^{2}) [/mm] - [mm] (1^{2}*ln(1) [/mm] - [mm] \bruch{1}{2}1^{2}) [/mm]  

[mm] =e^{2} -\bruch{1}{2}e^{2} [/mm] + [mm] \bruch{1}{2} [/mm] = 4,195

in der lösung jedoch steht:

[mm] \bruch{1}{9}(2e^{3}+1) [/mm] = 4,574....

wo steckt mein Fehler?

Danke, Florian



Habe die Frage nur in diesem Forum gestellt.

Edit: Mir ist grad aufgefallen,. ich muss das zweite Integral natürlich auch mit den Grenzen ausrechnen und nicht das Produkt davor. Oder?!

        
Bezug
bestimmtes Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 13:16 So 21.05.2006
Autor: Seppel

Hallo FlorianJ!

Dein eigentlicher Fehler liegt schon beim Festlegen von $u$ und $u'$. Das [mm] $x^2$ [/mm] ist $u'$, und somit ist [mm] $u=\frac{1}{3}x^3$. [/mm]
Bezüglich deines "Edit":
Du ermittelst jetzt erst einmal durch die partielle Integration die Stammfunktion, ich nenne sie mal $F$ und in die musst du dann die Grenzen einsetzen.
So sieht das dann mathematisch aus:
[mm] $\int_{1}^{e}{f(x) dx}=[F(x)]_1^e=F(e)-F(1)$ [/mm]

Ich hoffe, dir hilft das weiter!

Liebe Grüße
Seppel

Bezug
                
Bezug
bestimmtes Integral: weiter..
Status: (Frage) beantwortet Status 
Datum: 15:49 Mo 22.05.2006
Autor: FlorianJ

hi und danke schonmal.
nachdem weiterrechnen bekomme ich immer noch das falsche ergebnis:

[mm] =\bruch{1}{3}x^{3}ln(x) [/mm] - [mm] \integral_{1}^{e}{\bruch{1}{3}x^{3}*\bruch{1}{x}dx} [/mm]

[mm] =\bruch{1}{3}x^{3}ln(x) [/mm] - [mm] \integral_{1}^{e}{\bruch{1}{3}x^{2}dx} [/mm]


[mm] =\bruch{1}{3}x^{3}ln(x) [/mm] - [mm] \bruch{1}{9}x^{3} [/mm]

[mm] \bruch{1}{3}e^{3}-\bruch{1}{9}e^{3} [/mm] - [mm] \bruch{1}{9} [/mm] = 4,35... [mm] \not= [/mm] 4,57..

wo ist der Fehler?

Danke :)




Bezug
                        
Bezug
bestimmtes Integral: Vorzeichenfehler!
Status: (Antwort) fertig Status 
Datum: 15:58 Mo 22.05.2006
Autor: Roadrunner

Hallo Florian!


Dir unterläuft beim Einsetzen der Integrationsgrenzen ein Vorzeichenfehler:

[mm]... \ = \ \left(\bruch{1}{3}e^{3}-\bruch{1}{9}e^{3}\right)- \left(0-\bruch{1}{9}\right) \ = \ \bruch{1}{3}e^{3}-\bruch{1}{9}e^{3}- 0 \ \red{+} \ \bruch{1}{9} \ = \ ...[/mm]


Gruß vom
Roadrunner


Bezug
                                
Bezug
bestimmtes Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:06 Mo 22.05.2006
Autor: FlorianJ

jo super, danke
man konzentriert sich halt irgendwie auf "das große" und vergisst "das kleine" - danke :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]