matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheoriebeweis: keine lösung in Z
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Zahlentheorie" - beweis: keine lösung in Z
beweis: keine lösung in Z < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

beweis: keine lösung in Z: beweis
Status: (Frage) beantwortet Status 
Datum: 22:04 Fr 27.04.2007
Autor: anapolis

Aufgabe
man zeige, dass die gleichungen a) [mm] 7x^3+2=y^3 [/mm] und [mm] b)x^2+y^2=3z^2 [/mm] keine ganzzahlige lösungen besitzen

ich brauche dringend eine idee. überleg schon ziemlich lange und komm einfach nicht drauf.  kann mir irgendjemand helfen?? bitte!!!!!Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
beweis: keine lösung in Z: Restklassen
Status: (Antwort) fertig Status 
Datum: 00:07 Sa 28.04.2007
Autor: HJKweseleit

Am einfachsten rechnest du mit Restklassen, bei a) mod 7 und bei b) mod 3 (die Faktoren vor den Vielfachen). Das muss nicht funktionieren, hier kann man nur herumprobieren.
$ [mm] 7x^3+2=y^3 [/mm] $
Rechnest du mod 7, gilt:
$ [mm] 0+2\equiv y^3 [/mm] $
$ [mm] 2\equiv y^3 [/mm] $
Nun gibt es für y die Restklassen 0,1,2,3,4,5 und 6.
Damit erhältst du für [mm] y^3 [/mm] der Reihe nach die Restklassen
0,1, [mm] 8\equiv 1,27\equiv 6,64\equiv 1,125\equiv [/mm] 6 und [mm] 216\equiv [/mm] 6. Keine ist [mm] \equiv [/mm] 2, also ist die Gleichung nicht ganzzahlig lösbar.

----------------

$ [mm] b)x^2+y^2=3z^2 [/mm] $
Rechnest du mod 3, gilt:
[mm] x^2+y^2\equiv [/mm] 0

Für die Restklassen 0, 1 und 2 erhältst du für [mm] x^2 [/mm] der Reihe nach 0, 1 und [mm] 4\equiv [/mm] 1, also nur 0 oder 1. Da aber die Summe aus [mm] x^2+y^2\equiv [/mm] 0 sein muss und weder 1+0 noch 0+1 noch 1+1  [mm] \equiv [/mm] 0 sind, geht dies nur mit 0+0.

Also sind x und y beide [mm] \equiv [/mm] 0 und damit Vielfache von 3.
Somit lassen sich x=3a und y=3b schreiben, a,b ganzzahlig.
Demnach ist [mm] x^2+y^2=9a^2+9b^2=3z^2 [/mm] und daher
[mm] 3a^2+3b^2=z^3. [/mm] Damit gilt aber, dass [mm] z^2 [/mm] Vielfaches von 3 ist, und da 3 eine Primzahl ist, muss z selber Vielfaches von 3 sein, also z=3c. Damit wird nun aber [mm] z^2=9c^2 [/mm] und deshalb [mm] 3a^2+3b^2=9c^3, [/mm] also [mm] a^2+b^2=3c^2. [/mm]
Wir haben nun wieder die selbe Beziehung zwischen a, b und c, die wir vorher zwischen x, y und z hatten. Wegen der obigen Zerlegung sind a, b und c jeweils kleiner als x, y und z. Wendet man die obige Argumentation nun wieder auf a, b und c an, kann man aus a, b und c wieder eine 3 herauskürzen, erhält wieder eine entsprechende Beziehung usw. . Die Überlegungen zeigen also: Wenn es einen Lösungsdrilling gibt, kann man seine Komponenten durch 3 dividieren und erhält einen neuen Lösungsdrilling usw. Da man ganze Zahlen aber nicht endlos durch 3 auf neue ganze Zahlen "kürzen" kann, kann diese Situation nicht vorliegen.  Als Begründung kommt nur in Frage, dass es keine solche gesuchte Lösung geben kann.


Bezug
                
Bezug
beweis: keine lösung in Z: vielen dank!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:26 So 29.04.2007
Autor: anapolis

Super! vielen Dank. Jetzt hab ich das endlich kapiert! Total gut erklärt!!!!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]