matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis-Sonstigesbeweis u form d umkehrfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Analysis-Sonstiges" - beweis u form d umkehrfunktion
beweis u form d umkehrfunktion < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

beweis u form d umkehrfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:51 Mi 07.03.2007
Autor: mickeymouse

Aufgabe
beweise die existenz der umkehrfunktion!
f(x)=  [mm] \bruch{x}{\wurzel{1+x^2}} [/mm]  ; definitionsmenge= [mm] \IR [/mm]

zuerst hab ich die ableitung gebildet, und rausgefunden, dass die ableitung > 0 ist, also die funktion auch umkehrbar ist!
um die umkehrfunktion zu erhalten, führe ich den variablentausch durch und löse nach y auf.
dann ergibt sich für die umkehrfunktion:
y= +/-  [mm] \bruch{x}{\wurzel{1-x^2}}; [/mm]
aber wie geht es dann weiter? woher weiß ich, für welchen definitionsbereich ich  [mm] -\bruch{x}{\wurzel{1-x^2}} [/mm] und wann [mm] +\bruch{x}{\wurzel{1-x^2}}; [/mm]  brauche?
danke

        
Bezug
beweis u form d umkehrfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 22:39 Mi 07.03.2007
Autor: heyks

Hallo Erika,


> beweise die existenz der umkehrfunktion!
>  f(x)=  [mm]\bruch{x}{\wurzel{1+x^2}}[/mm]  ; definitionsmenge= [mm]\IR[/mm]
>  zuerst hab ich die ableitung gebildet, und rausgefunden,
> dass die ableitung > 0 ist, also die funktion auch
> umkehrbar ist!
>  um die umkehrfunktion zu erhalten, führe ich den
> variablentausch durch und löse nach y auf.
>  dann ergibt sich für die umkehrfunktion:
>  y= +/-  [mm]\bruch{x}{\wurzel{1-x^2}};[/mm]
>  aber wie geht es dann weiter? woher weiß ich, für welchen
> definitionsbereich ich  [mm]-\bruch{x}{\wurzel{1-x^2}}[/mm] und wann
> [mm]+\bruch{x}{\wurzel{1-x^2}};[/mm]  brauche?

Bis hierher hast Du alles richtig gemacht !
Du mit der Angabe des Wertebereichs von f (dem sogenannten "Bild" von f)
bereits fertig, denn du brauchtest nur die Existenz zeigen .

Wenn Du die Umkehrfunktion auch explizit angeben möchtest, mußt Du dir noch ein paar Gedanken über die Lösungsmenge von quadratischen Gleichungen machen.

Daß Du 2 Funktionen als "Lösung" fur Dein Problem gefunden hast, liegt daran, daß das Quadrieren keine Äquivalenzumformung ist,d.h es können zu den eigentlichen Lösungen noch Lösungen dazukommen - genau das ist hier passiert !

Um herauszufinden welche Funktion die gesuchte Umkehrfunktion ist, mußt du dir  Gedanken machen, welche Werte die Funktion f überhaupt annehmen kann.
Du wirst dann bemerken, daß : y > 0  [mm] \gdw [/mm] x > 0

Diese Aquivalenz bestimmt dir die gesuchte Funktion eindeutig (So muß es ja auch sein, denn Du weißt bereits, daß [mm] f:\IR [/mm] ->  (-1,1) umkehrbar ist .

LG

Heiko


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]