matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMengenlehrebeweise Anzahl surjekt. abbild
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Mengenlehre" - beweise Anzahl surjekt. abbild
beweise Anzahl surjekt. abbild < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

beweise Anzahl surjekt. abbild: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:15 Do 03.11.2011
Autor: elmanuel

Aufgabe
Sei A, B Mengen mit n,m Elementen. Beweisen Sie es gibt  [mm] \choose{n über m} [/mm] * m! * m^(n-m) surjektive Abbildungen.


Hallo liebe Gemeinde!

Leider tu ich mir schwer mit der Mengenlehre...

Also ich hätt gesagt für a1 [mm] \in [/mm] A gibt es m Abbildungsmöglichkeiten. Ebenso für a2 ... an . Also gesamt [mm] m^n [/mm] Bilder = falsch

wo liegt mein Denkfehler??



        
Bezug
beweise Anzahl surjekt. abbild: Antwort
Status: (Antwort) fertig Status 
Datum: 13:36 Do 03.11.2011
Autor: tobit09

Hallo elmanuel,

> Sei A, B Mengen mit n,m Elementen. Beweisen Sie es gibt  
> [mm]\choose{n über m}[/mm] * m! * m^(n-m) surjektive Abbildungen.

Bitte poste immer die vollständige Aufgabenstellung. Ich gehe mal davon aus, sie lautet:

Seien A, B Mengen mit n, m Elementen, wobei [mm] $n,m\in\IN$ [/mm] mit [mm] $n\geq [/mm] m$. Beweisen Sie: Es gibt [mm] $\vektor{n\\m}\cdot m!\cdot m^{n-m}$ [/mm] surjektive Abbildungen [mm] $f\colon A\to [/mm] B$.

> Also ich hätt gesagt für a1 [mm]\in[/mm] A gibt es m
> Abbildungsmöglichkeiten. Ebenso für a2 ... an . Also
> gesamt [mm]m^n[/mm] Bilder = falsch
> wo liegt mein Denkfehler??

Damit hast du wieder die Anzahl ALLER Abbildungen von A nach B berechnet. Gesucht ist hier jedoch die Anzahl der SURJEKTIVEN Abbildungen von A nach B.


Jetzt kommt vermutlich eine Überraschung: Die Formel aus der Aufgabenstellung ist ebenso falsch.

Betrachte als Gegenbeispiel beliebige Mengen A,B mit $n=3$ bzw. $m=2$ Elementen. Dann liefert die Formel aus der Aufgabenstellung [mm] $\vektor{3\\2}\cdot2!\cdot2^{3-2}=12$. [/mm] Es müsste also 12 surjektive Abbildungen von $A$ nach $B$ geben. Es gibt aber überhaupt nur [mm] $m^n=8$ [/mm] Abbildungen von $A$ nach $B$!

Viele Grüße
Tobias

Bezug
                
Bezug
beweise Anzahl surjekt. abbild: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:32 Do 03.11.2011
Autor: elmanuel

Na dann ist ja auch logisch wieso ich da auf keinen grünen Zweig komm .. haha

mittlerweile wurde das Beispiel von der Homepage gelöscht ... Sieht so aus als ob der Prof sich da vertippt hat...

Danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]