matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare Algebrabijektive Abbildung N nach Z
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - bijektive Abbildung N nach Z
bijektive Abbildung N nach Z < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

bijektive Abbildung N nach Z: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:40 Mo 14.11.2005
Autor: tux_03

Hallo Zusammen,

ich habe da eine 2 Aufgaben, wo ich zeigen soll:

1.
Es gibt eine bijektive Abbildung von [mm] N_0 [/mm] nach [mm] Z[/mm].

Das ginge natürlich mit einer Differenz, wenn a>=b, b-a / Summe a+b. Dann hat man die negativen Zahlen, 0 und die positiven (also alle Zahlen aus Z). Nur wie schreibe ich das mathematisch auf?

2.
Es gibt KEINE bijektive abbildung von [mm] N_0[/mm] nach [mm] Z[/mm]. (Dies wäre eine Abbildung [mm] f : N_0 \to Z \ mit \ n \le m \Rightarrow f(n) \le f(m) [/mm])

Hier weiss ich gar keinen Ansatz.

Ciao tux_03



        
Bezug
bijektive Abbildung N nach Z: hmm?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:00 Mo 14.11.2005
Autor: mathmetzsch

Hallo,

habe ich jetzt Tomaten auf den Augen, oder steht da einmal "Es gibt eine bijektive Abbildung..." und "Es gibt KEINE bijektive Abbildung..."

Stimmt das so?

VG mathmetzsch

Bezug
                
Bezug
bijektive Abbildung N nach Z: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:02 Mo 14.11.2005
Autor: Leopold_Gast

Das ist in der Tat etwas unklar aufgeschrieben. Ich denke, bei 1. soll die Existenz einer Bijektion gezeigt werden, während bei 2. gezeigt werden soll, daß es keine die Anordnung erhaltende Bijektion gibt.

Bezug
                        
Bezug
bijektive Abbildung N nach Z: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 08:40 Do 17.11.2005
Autor: tux_03

Hallo,

genau das was leopold_gast meinte, ist gefragt. Hat jemand eine Idee dazu? Am Anfang hatte ich ja schon etwas skizziert, weiss aber nicht, ob das ein Lösungsansatz ist.

Ciao, tux_03

Bezug
                                
Bezug
bijektive Abbildung N nach Z: Antwort
Status: (Antwort) fertig Status 
Datum: 10:32 Do 17.11.2005
Autor: bazzzty


> 1.
>  Es gibt eine bijektive Abbildung von [mm]N_0[/mm] nach [mm]Z[/mm].
>  
> Das ginge natürlich mit einer Differenz, wenn a>=b, b-a /
> Summe a+b. Dann hat man die negativen Zahlen, 0 und die
> positiven (also alle Zahlen aus Z). Nur wie schreibe ich
> das mathematisch auf?

Ich verstehe Deinen Ansatz nicht ganz. Woher kommen die zwei Zahlen a und b? Warum machst Du es Dir nicht ganz leicht und wählst eine Funktion f, die jede gerade natürliche Zahl a auf a/2 abbildet und jede ungerade auf (a+1)/2 (bzw. (a-1)/2, wenn ihr die natülichen Zahlen ohne Null auffaßt)?

Mußt natürlich noch zeigen, daß das ne Bijektion ist.


> 2.
> Es gibt KEINE bijektive abbildung von [mm]N_0[/mm] nach [mm]Z[/mm]. (Dies
> wäre eine Abbildung [mm]f : N_0 \to Z \ mit \ n \le m \Rightarrow f(n) \le f(m) [/mm])

> Hier weiss ich gar keinen Ansatz.

Okay, versuch doch mal sowas zu konstruieren. Woran scheiterst du?
Mein Tipp: Es gibt irgendein [mm]z\in \IZ[/mm] mit [mm]f(0)=z[/mm] (f(1), wenn ihr die 0 nicht dabeihabt). Was ist mit den [mm]z^\prime

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]