matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Abbildungenbijektivität zeigen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Abbildungen" - bijektivität zeigen
bijektivität zeigen < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

bijektivität zeigen: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 17:49 Di 14.10.2008
Autor: mathemonster

Aufgabe
Seien A, B zwei Mengen, und f: A-->B eine Abbildung. Definiere C:= {(a,b) element A x B, f(a)=b}. es gibt zwei natürliche Abb. g: C--> A, g(a,b)=a. Zeigen sie dass g bijektiv ist.
die andere abb. ist hierfür nicht wichtig.

zunächst einmal habe ich mir überlegt ich muss zeigen, dass g sowohl injektiv als auch surjektiv ist -->bijektiv!?
dann hab ich mir überlegt ich  nehme ein element aus C, bilde es auf A ab und gucke dann ob das injektiv, bzw. bijektiv ist.
ich hab mir dann Ax(kreuz)B mal aufgeschrieben:
AxB={ [mm] a_1b_1 [/mm] , [mm] a_1b_1 [/mm] ,..., [mm] a_1b_m [/mm]
          [mm] a_2b_1 [/mm]
           ......
           [mm] a_nb_1,......................a_nb_m} [/mm]
aber dann weiß ich nicht weiter was ich machen soll.
vielleicht is ja da irgendwas richtig :-(
würde mich sehr über hilfe freuen

        
Bezug
bijektivität zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:56 Di 14.10.2008
Autor: fred97

Für die Injektivität mußt Du zeigen:

aus [mm] (a_1,b_1), (a_2,b_2) \in [/mm] C und [mm] g(a_1,b_1) [/mm] = [mm] g(a_2,b_2) [/mm] folgt [mm] a_1 [/mm] = [mm] a_2. [/mm]

Das ist aber leicht, wenn Du Dir die Def. von g anschaust.

Für die Surjektivität mußt Du zeigen:

Zu jedem [mm] a\in [/mm] A gibt es ein x [mm] \in [/mm] C mit g(x) = a. Welche Paar x [mm] \in [/mm] C leistet wohl das Gewünschte ?

FRED

Bezug
                
Bezug
bijektivität zeigen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 18:17 Di 14.10.2008
Autor: mathemonster

Erstmal Danke für diene Hilfe.
Ich hab jetzt folgendes gemacht:
Du hast gesagt:
Für die Injektivität mußt Du zeigen:

aus $ [mm] (a_1,b_1), (a_2,b_2) \in [/mm] $ C und $ [mm] g(a_1,b_1) [/mm] $ = $ [mm] g(a_2,b_2) [/mm] $ folgt $ [mm] a_1 [/mm] $ = $ [mm] a_2. [/mm] $

Also laut def. gilt [mm] g(a_1 [/mm] , [mm] b_1)=a_1 [/mm] und [mm] g(a_2 [/mm] , [mm] b_2)=a_2 [/mm]
somit gilt nach den vorraussetzungen [mm] a_1=a_2 [/mm]  --> injektiv

um die surjektivität zu zeigen muss ich jetzt ein päarchen(schreibt man das so?) aus C nehmen: (a,b) es in g(x) einsetzen und erhalte g(a,b)=a
--> surjektiv

aus allem zusammen folgt Bijektiv
is das so richtig?



Bezug
                        
Bezug
bijektivität zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:27 Mi 15.10.2008
Autor: koepper

Hallo Christian,

>  Für die Injektivität mußt Du zeigen:
>  
> aus [mm](a_1,b_1), (a_2,b_2) \in[/mm] C und [mm]g(a_1,b_1)[/mm] = [mm]g(a_2,b_2)[/mm]
> folgt [mm]a_1[/mm] = [mm]a_2.[/mm]

Genau genommen mußt du zeigen:
[mm] $(a_1,b_1), (a_2,b_2) \in [/mm] C$ und [mm] $g(a_1,b_1) [/mm] = [mm] g(a_2,b_2) \Longrightarrow (a_1, b_1) [/mm] = [mm] (a_2, b_2).$ [/mm]

> Also laut def. gilt [mm]g(a_1[/mm] , [mm]b_1)=a_1[/mm] und [mm]g(a_2[/mm] , [mm]b_2)=a_2[/mm]
>  somit gilt nach den vorraussetzungen [mm]a_1=a_2[/mm]  -->

und wegen [mm] $(a_1,b_1), (a_2,b_2) \in [/mm] C$ gilt ja gemäß Definition von $C$ auch [mm] $f(a_1) [/mm] = [mm] b_1$ [/mm] und [mm] $f(a_2) [/mm] = [mm] b_2$. [/mm]
Da [mm] $a_1 [/mm] = [mm] a_2$ [/mm] ist dann natürlich auch [mm] $b_1 [/mm] = [mm] b_2$ [/mm] und die Injektivität ist gezeigt.

> um die surjektivität zu zeigen muss ich jetzt ein
> päarchen(schreibt man das so?) aus C nehmen: (a,b) es in
> g(x) einsetzen und erhalte g(a,b)=a
>  --> surjektiv

das überzeugt mich noch nicht ganz.
Du mußt dir ein beliebiges $a [mm] \in [/mm] A$ vorgeben und zeigen, daß es dazu ein $(x, y) [mm] \in [/mm] C$ gibt, mit $g((x,y)) = a$.
Setze dazu einfach $x = a$. Da f eine Funktion mit Definitionsmenge A ist, gibt es dann $y = f(x) [mm] \in [/mm] B$ und nach Definition von $C$ ist $(x,y) [mm] \in [/mm] C$ mit $g((x,y)) = a$.
  

> aus allem zusammen folgt Bijektiv
>  is das so richtig?

dann ja. ;-)

LG
Will

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]