matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Eigenwertechar. Polynom
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra - Eigenwerte" - char. Polynom
char. Polynom < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

char. Polynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:29 So 02.05.2010
Autor: kiwibox

Hallo,

ich soll das charakterische Polynom und dessen Faktorisierung ausrechnen. Allerdings habe ich einige Schwierigkeiten dabei.

Um das char. Polynom auszurechnen, nehme ich dir Formel: [mm] det(x\cdot I_{n}-A) [/mm]

A= [mm] \pmat{1 & -3 & 1 & -2 \\ 2 & 1 & 1 & 1 \\ -2 & 4 & -2 & 3 \\ -2 & -2 & -1 & -2} [/mm]

[mm] \vmat{ x- 1 & 3 & -1 & 2 \\ -2 & x-1 & -1 & -1 \\ 2 & -4 & x+2 & -3 \\ 2 & 2 & 1 & x+2} [/mm] = [mm] \vmat{ X- 1 & 3 & -1 & 2 \\ -2 & x-1 & -1 & -1 \\ 0 & x-5 & x+1 & -4 \\ 0 & x+1 & 0 & x+1} [/mm]

= (x-1) [mm] \cdot \vmat{ x-1 & -1 & -1 \\ x-5 & x+1 & -4 \\ x+1 & 0 & x+1} [/mm] - (-2) [mm] \cdot \vmat{ 3 & -1 & 2 \\ x-5 & x+1 & -4 \\ x+1 & 0 & x+1} [/mm]

= (x-1) [mm] \cdot [/mm] [(x-1)(x+1)(x+1)+(-1)(-4)(x+1)+(-1)(x-5)(0)-(-1)(x-5)(x+1)-(x-1)(-4)(0)-(-1)(x+1)(x+1)]
+2 [mm] \cdot [/mm] [(3)(x+1)(x+1)+(-1)(-4)(x+1)+(2)(x-5)(0)-(-1)(x-5)(x+1)-(3)(-4)(0)-(2)(x+1)(x+1)]

[mm] =(x-1)[(x-1)(x^2+2x+1)+4x+4+0+x^2+x-5x-5+0+x^2+2x+1)] [/mm]
[mm] +2[3x^2+6x+3+4x+4+0+x^2+x-5x-5+0-2x^2-4x-2] [/mm]

[mm] =(x-1)[x^3+2x^2+1x-x^2-2x-1+4x+4+x^2+x-5x-5+x^2+2x+1)] [/mm]
[mm] +2[2x^2-2x] [/mm]

[mm] =(x-1)[x^3+3x^2+1x-1)] +2[2x^2-2x] [/mm]

= [mm] x^4+3x^3+x^2-x-x^3-3x^2-x+1+4x^2-4x [/mm]

= [mm] x^4+2x^3+2x^2-2x+1 [/mm]

allerdings geht bei mir die Gleichung nicht auf. Irgendwas stimmt da nicht.
Gibt es vielleicht einfachere Wege um das char. Polynom zuberechnen???
Kann einer mal drüber schauen, wo sich vielleicht mein Rechnenfehler eingeschlichen hat? Das wäre echt super.

lg kiwibox

        
Bezug
char. Polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 16:07 So 02.05.2010
Autor: dormant

Hi!

Das ist ja unmesnchlich, was du da tun musst. Ich würde veruschen die Matrix auf eine Diagonalform zu bringen, oder was anderes schlaues.

Matlab sagt, dass die Eigenwerte +-3i und -1 mit doppelter Vielfachheit sind.

Grüße,
dormant

Bezug
                
Bezug
char. Polynom: Unterraum bestimmen...
Status: (Frage) überfällig Status 
Datum: 17:19 So 02.05.2010
Autor: kiwibox

ich habe das nomal nachgerechnet, das char. Polynom ist: [mm] h_{\phi}(x)=x^4+2x^3+2x^2+1=(x+1)^2(x^2+1), [/mm] also komme ich auch auf die bereits genannten Eigenwerte. allerdings ist v= [mm] \IQ^4, \phi \in [/mm] End(V) und dargestellt durch die Darstellungsmatrix bzgl der Standardmatrix S.

nun soll ich zu jedem Primärfaktor [mm] p_{i}^{e_i} [/mm] von [mm] h_{\phi}, [/mm] dabei setzt sich [mm] h_{\phi}=p_{1}^{e_i} \cdots p_r{e_r} [/mm] zusammen, den Unterraum [mm] V_{i}=Kern(p_{i}^{e_{i}}(\phi)) [/mm] berechnen.

Mein Ansatz dazu ist jetzt:
[mm] h_{\phi}=(x+1)(x+1)(x^2+1) [/mm]

[mm] Kern(p_{i}^{e_{i}}(\phi)) \gdw det(p_{i}^{e_{i}}(\phi))=0 [/mm]
aber wie berechne ich nun [mm] p_{i}^{e_{i}}(\phi) [/mm] aus?
[mm] (x+1)(\phi)=? [/mm] ich habe keine Ahnung und stehe auf dem Schlauch. Was muss ich nun tun um an [mm] (x+1)(\phi) [/mm] zu gelangen? Setze ich das in die Darstellungsmatrix irgendwie ein?

Bezug
                        
Bezug
char. Polynom: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Di 04.05.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]