matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenProzesse und Matrizencharakteristisches Polynom
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Prozesse und Matrizen" - charakteristisches Polynom
charakteristisches Polynom < Prozesse+Matrizen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Prozesse und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

charakteristisches Polynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:05 Di 24.07.2007
Autor: Race

Hallo!

Ich habe eine Frage zur Berechnung des charakteristischen Polynoms.
Die Berechnung mit der Säkulargleichung, also [mm] \chi(\lambda)=\det(C-\lambda*E) [/mm] ist mir klar, aber man kann das char. Polynom ja noch folgendermaßen berechnen:
[mm] \chi(\lambda)=(-1)^n*\lambda^n+(-1)^{n-1}*sp(C)*\lambda^{n-1}+...+\det(C) [/mm]
wobei sp(C)=spur(C) die Aufsummation der Diagonalelemente der Matrix C ist.
Ich verstehe bei dieser Formel das System aber nicht ganz. Wie komme ich auf den Zusammenhang zwischen Spur und Determinante, und was würde ich bei den Gliedern zwischen den oben angegebenen als diesen Faktor nehmen?
Es wäre super, wenn mir jemand helfen könnte!

lg Ines

P.S.: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
charakteristisches Polynom: Lösung
Status: (Antwort) fertig Status 
Datum: 16:15 Di 24.07.2007
Autor: MarthaLudwig

Hallo Race!

Entwickle die Determinante,die zum Polynom gehört, nach irgendeine Zeile oder Spalte;
Spur(C)=Summe der cii;
det(C);
Vergleiche die entsprechenden Terme.

Noch ein Buch Tipp:Höhrere Mathematik Band 1 von Mayberg.Vachenauer.

Hoffe,daß ich helfen konnte.

Grüße Martha.


Bezug
        
Bezug
charakteristisches Polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 16:28 Di 24.07.2007
Autor: angela.h.b.


>  Die Berechnung mit der Säkulargleichung, also
> [mm]\chi(\lambda)=\det(C-\lambda*E)[/mm] ist mir klar, aber man kann
> das char. Polynom ja noch folgendermaßen berechnen:
>  
> [mm]\chi(\lambda)=(-1)^n*\lambda^n+(-1)^{n-1}*sp(C)*\lambda^{n-1}+...+\det(C)[/mm]
>  wobei sp(C)=spur(C) die Aufsummation der Diagonalelemente
> der Matrix C ist.
>  Ich verstehe bei dieser Formel das System aber nicht ganz.
> Wie komme ich auf den Zusammenhang zwischen Spur und
> Determinante, und was würde ich bei den Gliedern zwischen
> den oben angegebenen als diesen Faktor nehmen?

Hallo,

[willkommenmr].

Der von Dir angegebene Zusammenhang ist eine Folgerung aus [mm] \chi(\lambda)=\det(C-\lambda*E), [/mm] keine Bauanleitung fürs charakteristische Polynom.

Wie von MarthaLudwig erwähnt kannst Du diesen Zusammenhang erhalten, wenn Du die entsprechende Determinante ausrechnest.
Diese Informationen dienen eher nicht dazu, das charakteristische Polynom auszurechnen.

Aber wenn Du das charakteristische Polynom einer Matrix A vorliegen hast, kennst Du mit der Information [mm] a_0=(-1)^ndet(A) [/mm] automatisch die Determinante der betreffenden Matrix.

Die Information [mm] a_{n-1}=-Spur(A) [/mm] ist auch interessant: die Spur ist nämlich nicht nur die Summe der Diagonalelemente, sondern auch die Summe der Eigenwerte. Hier ergibt sich eine Kontrollmöglichkeit dafür, ob man die Eigenwerte der Matrix richtig berechnet hat.

Gruß v. Angela

Bezug
                
Bezug
charakteristisches Polynom: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:52 Di 24.07.2007
Autor: Race

Vielen Dank euch beiden!

Dann hab ich da wohl was missverstanden, wenn das keine Berechnungsanleitung sondern eine Folgerung ist, ist alles klar.
Danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Prozesse und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]