matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare Algebradet(-A)=(-1)^ndet(A)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - det(-A)=(-1)^ndet(A)
det(-A)=(-1)^ndet(A) < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

det(-A)=(-1)^ndet(A): Beweis
Status: (Frage) beantwortet Status 
Datum: 16:03 Fr 17.11.2006
Autor: pax

Aufgabe
Zeigen Sie: Für n ungerade gibt es keine schiefsymetrischen Matrizen in GLn(R)

Hallo,
Die Aufgabe wurde hier schonmal so ähnlich vorgestellt aber wie beweise ich bzw. wieso gilt [mm] det(-A)=(-1)^n*det(A) [/mm]
Ich hab den Rechenweg kann mir aber ich weiß nicht wieso diese Gültigkeit erklären.
Danke für die Hilfe
Pax


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
det(-A)=(-1)^ndet(A): Antwort
Status: (Antwort) fertig Status 
Datum: 16:41 Fr 17.11.2006
Autor: angela.h.b.


> aber wie beweise ich bzw. wieso gilt [mm]det(-A)=(-1)^n*det(A)[/mm]

Hallo,

[willkommenmr].

Ich glaube eigentlich nicht, daß Du das beweisen mußt, das war doch sicher in der Vorlesung dran.

Ich muß gestehen, daß ich diese Determinantenbeweise hasse, ich werde Dir also keinen liefern...

Aber eine Anregung zum Verständnis von  [mm] det(-A)=(-1)^n*det(A) [/mm]
habe ich parat:

Berechne det [mm] \pmat{ a & b \\ c & d }, [/mm] det [mm] \pmat{ -a & -b \\ -c & -d }, [/mm] det [mm] \pmat{ a & b & c \\ d & e & f \\ g & h & i }, \pmat{ -a & -b & -c \\ -d & -e & -f \\ -g & -h & -i }. [/mm]

Da wirst du das Wesentliche verstehen.

Gruß v. Angela



Bezug
                
Bezug
det(-A)=(-1)^ndet(A): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:42 Fr 17.11.2006
Autor: pax

Danke,

das Problem dabei ist, dass wir dies nicht in der Vorlesung gezeigt haben, oder ich müsste nochmal alles durchgehen.
Was es bedeutet ist eigentlich schon klar, aber wenn wir es noch nicht hatten brauch ich einen allgemeinen Beweis.


Bezug
                        
Bezug
det(-A)=(-1)^ndet(A): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:44 Fr 17.11.2006
Autor: angela.h.b.

In der Vorlesung wird normalerweise bewiesen det(cA)=c^nA.

Guck noch einmal nach.
Man findet es meist in der Gegend der Beweise über die Determinante von AB und [mm] A^{-1}. [/mm]

Ansonsten findest du den Beweis in Lehrbüchern, ich glaube, wir brauchen ihn hier nicht abzuschreiben. Es ist eine Folge der Linearität der Determinantenform.

Wenn Du Fragen zu einzelnen Beweisschritten hast, kannst Du sie ja hier stellen.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]