matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, Körperdirac Basis Polynomsemiring
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gruppe, Ring, Körper" - dirac Basis Polynomsemiring
dirac Basis Polynomsemiring < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

dirac Basis Polynomsemiring: Frage Beweis
Status: (Frage) überfällig Status 
Datum: 15:18 Mo 20.02.2012
Autor: MaGGuZ

Aufgabe
Zu zeigen ist: [mm] \delta_{a}^{E} \* \delta_{b}^{E} [/mm] = [mm] \delta_{a\*b}^{E}, [/mm]
wobei [mm] \delta_{a}^{E} [/mm] die Dirac Basis eines Polynomsemirings [mm] \mathds{S}[X]:=\mathds{S}[\mathds{G}(\mathds{N},+,0)] [/mm] mit [mm] \delta_{a} [/mm] : E [mm] \to S^{E}, [/mm] e [mm] \to \delta_{a}^{E} [/mm]

Also ich komme nicht richtig weiter und bin mir auch nicht sicher ob ich es richtig verstanden habe.
Bisher habe ich folgendes:
Die Aussage [mm] \delta_{a}^{E} \* \delta_{b}^{E} [/mm] = [mm] \delta_{a\*b}^{E} [/mm] müsste ja äquivalent dazu sein,
dass für jedes e [mm] \in [/mm] E gilt, dass  [mm] \delta_{a\*b}^{E}(e) [/mm] =1 [mm] \gdw (\delta_{a}^{E} \* \delta_{b}^{E})(e) [/mm] = 1 ?!

Wie geht es weiter? Vielen Dank im Voraus!

Beste Grüße

        
Bezug
dirac Basis Polynomsemiring: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:25 Mi 22.02.2012
Autor: hippias

Ich moechte gerne helfen, verstehe die verwendeten Symbole aber nicht.
> Zu zeigen ist: [mm]\delta_{a}^{E} \* \delta_{b}^{E}[/mm] =
> [mm]\delta_{a\*b}^{E},[/mm]
>  wobei [mm]\delta_{a}^{E}[/mm] die Dirac Basis eines
> Polynomsemirings
> [mm]\mathds{S}[X]:=\mathds{S}[\mathds{G}(\mathds{N},+,0)][/mm] mit
> [mm]\delta_{a}[/mm] : E [mm]\to S^{E},[/mm] e [mm]\to \delta_{a}^{E}[/mm]

Was ist ein Polynomsemiring, was ist $E$, was bedeutet [mm] $\delta_{a}^{E}$? [/mm] Wird jedem $e$ dasselbe [mm] $\delta_{a}^{E}$zugeordnet? [/mm] Wie funktionieren die Verknuepfungen [mm] $\*$? [/mm]

>  Also ich
> komme nicht richtig weiter und bin mir auch nicht sicher ob
> ich es richtig verstanden habe.
>  Bisher habe ich folgendes:
>  Die Aussage [mm]\delta_{a}^{E} \* \delta_{b}^{E}[/mm] =
> [mm]\delta_{a\*b}^{E}[/mm] müsste ja äquivalent dazu sein,
> dass für jedes e [mm]\in[/mm] E gilt, dass  [mm]\delta_{a\*b}^{E}(e)[/mm] =1
> [mm]\gdw (\delta_{a}^{E} \* \delta_{b}^{E})(e)[/mm] = 1 ?!
>
> Wie geht es weiter? Vielen Dank im Voraus!
>  
> Beste Grüße


Bezug
        
Bezug
dirac Basis Polynomsemiring: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Mi 22.02.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]