matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Sonstigesdiverse Aufgaben
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis-Sonstiges" - diverse Aufgaben
diverse Aufgaben < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

diverse Aufgaben: Aufgabe 2
Status: (Frage) beantwortet Status 
Datum: 19:51 Di 19.02.2008
Autor: diecky

Aufgabe
Gegeben sei eine Konservendose mit Höhe h und Durchmesser d. Ihr Volumen berechnet sich als [mm] V=\bruch{\pi}{4}d²h [/mm] und ihre Oberfläche beträgt M = [mm] \pi(\bruch{1}{2}d²+dh). [/mm] Wie müssen d und h gewählt werden, damit die Oberfläche bei einem vorgegebenen Volumen V=Vo minimal wird?

Meine Lösungen:

Aufg.2
Hier hab ich zuerst die Volumengleichung nach h aufgelöst:
[mm] h=\bruch{4vo}{\pi d²} [/mm]
Nun habe ich diese Lösung in M eingesetzt und erhalte nach Vereinfachung:
M= [mm] \bruch{1}{2}\pi [/mm] d² + [mm] \bruch{4vo}{d} [/mm]
M' = [mm] \pi [/mm] d - [mm] \bruch{4vo}{d²} [/mm] = 0 gwd.
.... d= [mm] \bruch{4vo}{\pi} [/mm]
Über die 2.Ableitung findet man dann heraus, dass es sich hierbei um ein lokales Minimum handelt.
d = [mm] \bruch{4vo}{\pi} [/mm]
h (durch einsetzen) = [mm] \bruch{\pi}{4vo} [/mm]



        
Bezug
diverse Aufgaben: Korrektur
Status: (Antwort) fertig Status 
Datum: 20:17 Di 19.02.2008
Autor: Loddar

Hallo diecky!


> [mm]h=\bruch{4vo}{\pi d²}[/mm]
> Nun habe ich diese Lösung in M
> eingesetzt und erhalte nach Vereinfachung:
> M= [mm]\bruch{1}{2}\pi[/mm] d² + [mm]\bruch{4vo}{d}[/mm]
> M' = [mm]\pi[/mm] d - [mm]\bruch{4vo}{d²}[/mm] = 0 gwd.

[ok] Bis hierher stimmt alles!


>  .... d= [mm]\bruch{4vo}{\pi}[/mm]

[notok] Hier hast Du Dich verrechnet. Dieses Ergebnis haut auch von den Einheiten her nicht hin.

Ich erhalte: $d \ = \ [mm] \wurzel[3]{\bruch{4*V_0}{\pi}}$ [/mm] .

> Über die 2.Ableitung findet man dann heraus, dass es sich
> hierbei um ein lokales Minimum handelt.

[ok] Aber dann bitte mit dem richtigen d-Wert.


> h (durch einsetzen) = [mm]\bruch{\pi}{4vo}[/mm]

[notok] Folgefehler!


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]