matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVK45: Mathe für's Abi 2009e-Fkt, Fläche, Anwendung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "VK45: Mathe für's Abi 2009" - e-Fkt, Fläche, Anwendung
e-Fkt, Fläche, Anwendung < VK45: Mathe für's Abi 2009 < VK Abivorbereitungen < Schule < Vorkurse < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "VK45: Mathe für's Abi 2009"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

e-Fkt, Fläche, Anwendung: Übungsaufgabe
Status: (Übungsaufgabe) Übungsaufgabe Status 
Datum: 22:56 Mo 02.02.2009
Autor: informix

Aufgabe
Zu jedem $k > 0_$ ist eine Funktion $ [mm] f_k [/mm] $ gegeben durch
$ [mm] f_k(t)=80\cdot{}e^{k\cdot{}t}-\frac{1}{3}\cdot{}e^{2k\cdot{}t}=80\cdot{}e^{k\cdot{}t}-\frac{1}{3}\cdot{}\left(e^{k\cdot{}t}\right)^2 [/mm] $ ; $ [mm] t\in \IR [/mm] $.

a. Bestimmen Sie die Schnittpunkte mit der t-Achse, die Hoch-, Tief- und Wendepunkte sowie die Asymptoten des Graphen von $ [mm] f_k. [/mm] $

b. Begründen Sie, dass der folgende Graph zu $ [mm] f_{0,5} [/mm] $ gehört.
[Dateianhang nicht öffentlich]

c. Die t-Achse und der Graph von $ [mm] f_k [/mm] $ begrenzen eine bis „ins Unendliche reichende“ Fläche.
Berechnen Sie die Gleichung der zur t-Achse senkrechten Geraden g, die diese
Fläche in zwei Teilflächen einteilt, sodass der Inhalt der linken Teilfläche dreimal so groß ist wie der Inhalt der rechten Teilfläche.

d. Der Graph von $ [mm] f_{0,5} [/mm] $ (siehe Aufgabenteil b) zeigt den Verlauf einer Schädlingspopulation in einem Wald während der Bekämpfung mit einem Pestizid, beginnend bei $ [mm] t_1 [/mm] $ = 0 und endend zu der Zeit $ [mm] t_2 [/mm] $ , ab der keine Schädlinge im Wald mehr vorhanden sind.
Dabei gilt Folgendes:
1 Einheit der Funktionswerte $ [mm] \hat= [/mm] $ 1000 Schädlinge
1 Einheit der t-Werte $ [mm] \hat= [/mm] $ 1 Tag

d1. Beschreiben Sie kurz den Verlauf der Population im Intervall $ [mm] [t_1;t_2]. [/mm] $ Gehen Sie dabei auf die Größe und auf die Wachstumsgeschwindigkeit der Schädlingspopulation ein.

d2. 18 Stunden bevor die Population am stärksten wuchs, wurde das Pestizid über dem Wald versprüht. Bestimmen Sie den Zeitpunkt und die Anzahl der Schädlinge zu diesem Zeitpunkt.

d3. Jeder Schädling vertilgt pro Tag $ 3 [mm] cm^2 [/mm] $ Blattfläche. Wie viel Blattfläche wurde von den Schädlingen insgesamt gefressen?

.

        
Bezug
e-Fkt, Fläche, Anwendung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:50 So 12.04.2009
Autor: DrNetwork

[mm] N\left(\frac{ln240}{k}|0\right) [/mm]
[mm] E\left(\frac{ln120}{k}|4800\right) [/mm] Max. da. k>0 ^ [mm] f_k''\left(\frac{ln120}{k}\right)<0 [/mm]
[mm] W\left(\frac{ln60}{k}|3600\right) [/mm]

b) prüf ich die Werte aus a)

c) [mm] a_1=\frac{ln360}{k} [/mm]
[mm] a_2=\frac{ln120}{k} [/mm]

da Nullstelle bei ln240/k
streichen wir [mm] a_1 [/mm] bzw. gilt  [mm] a_2 [/mm]

d) Bei [mm] t_1=0, [/mm] also dem ersten Tag sind 79 600 Schädlinge im Wald vorhanden, ab nun steigt die Population schnell an bis zum 8 Tag (t=8.18) ab da an verringert sich die Geschwindigkeit setigt aber weiter bis zum Maximum am 9 Tag (t=9.57) an. Es sind nun 4.8 Mio Schädlinge im Wald. Ab jetzt fällt die Population rapide bis zum Ende des 10. Tages sind keine SChädlinge mehr vorhanden.

e) t=7.43, Anzahl d. Sch. 2.72 Mio.
f) Blattfläche = 57 600 [mm] cm^3 [/mm]

Bezug
                
Bezug
e-Fkt, Fläche, Anwendung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:37 Mi 29.04.2009
Autor: moody

Hallo,

ich habe leider keinen Ansatz zur Asymptote. Nullstellen und Hoch-/Tief- und Wendepunkte kann ich bis hierher aber bestätigen.

Ich hoffe ihr könnt mir auf die Sprünge helfen.

lg moody

Bezug
                        
Bezug
e-Fkt, Fläche, Anwendung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:26 Mi 29.04.2009
Autor: abakus


> Hallo,
>  
> ich habe leider keinen Ansatz zur Asymptote. Nullstellen
> und Hoch-/Tief- und Wendepunkte kann ich bis hierher aber
> bestätigen.
>  
> Ich hoffe ihr könnt mir auf die Sprünge helfen.
>  
> lg moody

Hallo,
du siehst doch im Graphen der Beispielfunktion, dass er sich der negativen t-Achse annähert.
Bilde also mal den Grenzwert für t gegen "minus unendlich".
Gruß Abakus


Bezug
                                
Bezug
e-Fkt, Fläche, Anwendung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:32 Mi 29.04.2009
Autor: moody

Vielen Dank, abakus!

Bezug
                
Bezug
e-Fkt, Fläche, Anwendung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:37 Mi 29.04.2009
Autor: moody

Bei Aufgabe c) komme ich ebenfalls nicht weiter.

Mein Ansatz ist das ich erstmal die Fläche von [mm] -\infty [/mm] bis [mm] \bruch{ln240}{k} [/mm] bestimmen möchte.

Dazu bilde ich die Stammfunktion [mm] $F_k [/mm] (t) = [mm] \bruch{80}{k}e^{kt} [/mm] -  [mm] \bruch{1}{6k}e^{2kt}$ [/mm]

Dann habe ich [mm] -\infty [/mm] und [mm] \bruch{ln240}{k} [/mm] eingesetzt.

Für den Teil mit [mm] \bruch{ln240}{k} [/mm] bekam ich [mm] \bruch{19180}{k} [/mm] heraus und für den Teil mit [mm] -\infty [/mm] kam $0$ heraus.

Stimmt das soweit und muss ich jetzt ausrechnen für welches g der rechte Teil die Fläche von [mm] \bruch{ln4975}{k} [/mm] einschließt? (( 1/4 von der ganzen Fläche )).

lg moody

Bezug
                        
Bezug
e-Fkt, Fläche, Anwendung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:41 Do 30.04.2009
Autor: steppenhahn

Hallo!

> Für den Teil mit [mm]\bruch{ln240}{k}[/mm] bekam ich
> [mm]\bruch{19180}{k}[/mm] heraus und für den Teil mit [mm]-\infty[/mm] kam [mm]0[/mm]
> heraus.

Ich komme beim Einsetzen der oberen Grenze auf [mm] \bruch{9600}{k}: [/mm]

[mm] $\left[\bruch{80}{k}*e^{k*t} - \bruch{1}{6*k}*e^{2*k*t}\right]_{-\infty}^{\bruch{\ln(240)}{k}} [/mm] = [mm] \left(\bruch{80}{k}*240 - \bruch{1}{6*k}*240^{2}\right)-0 [/mm] = [mm] \bruch{9600}{k}$ [/mm]

Grundsätzlich wäre dein weiteres Vorgehen aber richtig, du musst das nun durch 4 teilen, also muss das Integral von g bis [mm] \bruch{\ln(240)}{k} [/mm] dann [mm] \bruch{2400}{x} [/mm] ergeben.

Viele Grüße, Stefan.

Bezug
                                
Bezug
e-Fkt, Fläche, Anwendung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:18 Mo 04.05.2009
Autor: moody

Okay vielen Dank!

Habe meine Abiturklausur ja jetzt überstanden ;-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "VK45: Mathe für's Abi 2009"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]