matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-Funktionene-Funktion
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Exp- und Log-Funktionen" - e-Funktion
e-Funktion < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

e-Funktion: Ableitung / Stammfunktion
Status: (Frage) beantwortet Status 
Datum: 19:50 Mo 07.03.2005
Autor: SuperTTT

Hallo,

ich habe folgende Funktion: f(x)=2x * e^(1-x)
Aufgabe 2: Zeige: F(x)=2x * e^(1-x) ist Stammfunktion.

Würde also bedeuten, f(x) und F(x) wären identisch.

Habe mir jetzt allerdings von einer mir mathematisch überlegenen Person sagen lassen, dass dies nicht stimmen würde, obwohl die Aufgabe so an der Tafel stand.
Laut des Mathebrains sähe die Ableitung von F(x) so aus (Produktregel): 2*e^(1-x)+2x*-(e^(1-x)) (großer Gott, ich peil ja noch net mal wie man das zusammenfasst).

Ich bin jetzt leider total irritiert und überfordert.
Danke im Voraus.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

PS: Bitte entschuldigt, hab jetzt schon ein paar mal die Vorschau genutzt, bekomm das mit dem Formelsystem noch net hin. Aber das wird schon noch. ;)

        
Bezug
e-Funktion: KEINE Stammfunktion!
Status: (Antwort) fertig Status 
Datum: 20:04 Mo 07.03.2005
Autor: Loddar

Hallo SuperTTT,

[willkommenmr] !!


> ich habe folgende Funktion: f(x)=2x * e^(1-x)
> Aufgabe 2: Zeige: F(x)=2x * e^(1-x) ist Stammfunktion.

> Habe mir jetzt allerdings von einer mir mathematisch
> überlegenen Person sagen lassen, dass dies nicht stimmen
> würde, obwohl die Aufgabe so an der Tafel stand.
> Laut des Mathebrains sähe die Ableitung von F(x) so aus
> (Produktregel): 2*e^(1-x)+2x*-(e^(1-x)) (großer Gott, ich
> peil ja noch net mal wie man das zusammenfasst).

Deine sog. "Mathebrain" als Dir mathematisch überlegene Person hat recht ...

Die Ableitung der vermeintlichen Stammfunktion $F(x)$ lautet:

$F'(x) = [mm] 2*e^{1-x} [/mm] + [mm] 2x*e^{1-x}*(-1) [/mm] = [mm] 2*e^{1-x} [/mm] - [mm] 2x*e^{1-x} [/mm] = [mm] 2*e^{1-x}*(1 [/mm] - x) [mm] \not= [/mm] f(x)$

Da muß sich also beim Tafelbeschreiber oder beim Tafelabschreiber ein Fehler eingeschlichen haben ...


> PS: Bitte entschuldigt, hab jetzt schon ein paar mal die
> Vorschau genutzt, bekomm das mit dem Formelsystem noch net
> hin. Aber das wird schon noch. ;)

[ok] Prima - der Wille ist also schon da ...
Geh' doch einfach mal mit dem Mauszeiger auf einer meiner Formeln (oder click sie an) und dann siehst Du die Schreibweise ...


Gruß
Loddar


Bezug
                
Bezug
e-Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:19 Mo 07.03.2005
Autor: SuperTTT

Gehen wir jetzt einfach mal davon aus ich bekomme die Ableitungen in Zukunft hin. :D
Kannst du oder jemand anders mir mal die anderen Dinge erklären, die in diesem Fall für eine vollständige Funktionsuntersuchung notwendig sind (Definitionsmenge, Symmetrie, Schnittpunkte mit y-Achse, Nullstellen, Extremstellen, Wendestellen, Verhalten gegen +/- unendlich, Wertetabelle/Graph)?

Schreib nächsten Montag die Klausur und peil echt nix. :(

Bezug
                        
Bezug
e-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 20:43 Mo 07.03.2005
Autor: Zwerglein

Hi, SuperTTT,

Exponentialfunktionen dieses Typs sind einfacher als z.B. gebrochen-rationale Funktionen, da z.B. folgende Grundregel immer und ohne Ausnahme gilt: [mm] e^{(...)} [/mm] kann niemals =0 sein!
Schwieriger wirds beim Ableiten, weil Du
- immer die Produktregel und
- fast immer die Kettenregel brauchst.

Für die Kurvendiskussion nehmen wir Dein Beispiel: f(x) = [mm] 2x*e^{(1-x)} [/mm]
Berechnen wir erst die Ableitungen:
f'(x)= [mm] 2*e^{(1-x)} +2x*e^{(1-x)}*(-1) [/mm] = [mm] (-2x+2)*e^{(1-x)} [/mm]
(Wichtig auch: Der Exponent der e-Funktion ändert sich NIE!)
f''(x) = [mm] -2*e^{(1-x)} [/mm]  + [mm] (-2x+2)*e^{(1-x)} [/mm] *(-1) = [mm] (2x-4)*e^{(1-x)} [/mm]

Da - wie erwähnt - die Exponentialfunktion nie =0 sein kann, genügt es, im Folgenden die jeweiligen "Vorfaktoren = 0 zu setzen:
Nullstelle: 2x = 0  <=>  x=0 (einfache NS; daher Schnittstelle der x-Achse; keine Berührstelle).
Extremstelle: (-2x+2) =0  <=>  x=1. Vorzeichenwechsel +/-, daher Hochpunkt: H(1; 2) (y-Koordinate durch Einsetzen in f(x)!)
Wendestelle: (2x-4)=0  <=>  x=2. 1-fache NS von f'', daher Wendestelle.
W(2; [mm] 4e^{-1}) [/mm]  (y-Koordinate analog zum Extrempunkt!)

Grenzwerte: Da [mm] e^{x} [/mm] für x [mm] \to \infty [/mm] gegen [mm] +\infty [/mm] geht,
für x [mm] \to -\infty [/mm] aber gegen 0 (x-Achse als Asymptote),
also FAUSTREGEL [mm] "e^{+\infty} [/mm] = [mm] +\infty" [/mm]  und [mm] "e^{-\infty} [/mm] = 0" gilt,
hat unsere Funktion für x [mm] \to +\infty [/mm] die waagrechte Asymptote y=0 (x-Achse) und geht für x [mm] \to -\infty [/mm] gegen [mm] -\infty. [/mm]

mfG!
Zwerglein

  

Bezug
                                
Bezug
e-Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:26 Di 08.03.2005
Autor: SuperTTT

Ok, schonmal danke euch beiden.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]