matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungeingeschlossene Fläche berechn
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integralrechnung" - eingeschlossene Fläche berechn
eingeschlossene Fläche berechn < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

eingeschlossene Fläche berechn: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:09 Do 23.01.2014
Autor: uli001

Aufgabe
Bestimmen Sie den Inhalt der Fläche, die von der y-Achse, dem Graphen der unktion f(x) = 2x³-1/2x²+6x-16 und der Geraden g= -x12 eingeschlossen wird.

Hallo zusammen,

bei oben genannter Aufgabe ist die eingeschlossene Fläche zu berechnen. Einen Schnittpunkt habe ich schon ausgerechnet (2/10) und mir das Ganze mal aufskizziert. Nun ergibt sich ja eine Fläche, die rechts der y-Achse und ober- sowie unterhalb der x-Achse liegt. Wäre es jetzt richtig wenn ich die Fläche berechne, indem ich f(x)-g(x) im Integral 0 bis 2 berechne? Oder muss ich da Teilintervalle wählen, indem ich mir zuerst den Schnittpunkt mit der x-Achse ausrechne?

Danke für euren Tipp!
VG

        
Bezug
eingeschlossene Fläche berechn: Antwort
Status: (Antwort) fertig Status 
Datum: 11:19 Do 23.01.2014
Autor: M.Rex

Hallo

> Bestimmen Sie den Inhalt der Fläche, die von der y-Achse,
> dem Graphen der unktion f(x) = 2x³-1/2x²+6x-16 und der
> Geraden g= -x12 eingeschlossen wird.

g soll wahrscheinlich g(x)=-x+12 lauten, dann passt auch der Schnittpunkt P

[Dateianhang nicht öffentlich]

> Hallo zusammen,

>

> bei oben genannter Aufgabe ist die eingeschlossene Fläche
> zu berechnen. Einen Schnittpunkt habe ich schon
> ausgerechnet (2/10) und mir das Ganze mal aufskizziert. Nun
> ergibt sich ja eine Fläche, die rechts der y-Achse und
> ober- sowie unterhalb der x-Achse liegt. Wäre es jetzt
> richtig wenn ich die Fläche berechne, indem ich f(x)-g(x)
> im Integral 0 bis 2 berechne?

Das ist genau der Weg, berechne

[mm] \int\limits_{0}^{2}[(-x+12)-(2x³-0,5x²+6x-16)]dx [/mm]

Damit berechnest du die blaue Fläche:



> Oder muss ich da
> Teilintervalle wählen, indem ich mir zuerst den
> Schnittpunkt mit der x-Achse ausrechne?

Wozu?

>

> Danke für euren Tipp!
> VG

Marius

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
                
Bezug
eingeschlossene Fläche berechn: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:23 Do 23.01.2014
Autor: uli001

Vielen Dank!!! Dann mache ich mich mal ans ausrechnen *jippie*

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]